Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 24  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission


ORIGINAL ARTICLE
Year : 2010  |  Volume : 2  |  Issue : 2  |  Page : 124-131

Chitosan superporous hydrogel composite-based floating drug delivery system: A newer formulation approach


1 Department of Pharmaceutics and Pharmaceutical Technology, Shri Sarvajanik Pharmacy College, Hemchandracharya North Gujarat University, Mehsana, Gujarat - 384 001, India
2 Department of Pharmaceutical Chemistry, Shri Sarvajanik Pharmacy College, Hemchandracharya North Gujarat University, Mehsana, Gujarat - 384 001, India

Correspondence Address:
Hitesh Chavda
Department of Pharmaceutics and Pharmaceutical Technology, Shri Sarvajanik Pharmacy College, Hemchandracharya North Gujarat University, Mehsana, Gujarat - 384 001
India
Login to access the Email id


DOI: 10.4103/0975-7406.67010

PMID: 21814446

Get Permissions

Objective: In this study efforts have been made to design a drug delivery system based on a superporous hydrogel composite, for floating and sustained delivery of Ranitidine hydrochloride. Materials and Methods: The characterization studies were performed by the measurement of apparent density, porosity, swelling studies, mechanical strength studies, and scanning electron microscopy studies. The prepared formulation was evaluated for buoyant behavior, in vitro drug release, kinetics of drug release, and stability. The release profile of Ranitidine hydrochloride was investigated by changing the release retardant polymer in the formulation. To ascertain the kinetics of drug release, the drug release profiles were fitted to mathematical models that included zero-order, first-order, Higuchi, Hixson-Crowell, Korsmeyer-Peppas, Weibull, and Hopfenberg models. Results: Scanning electron microscopy images clearly indicated the formation of interconnected pores and capillary channels, and cross-linked Chitosan molecules were observed around the peripheries of the pores. The prepared drug delivery system floated and delivered the Ranitidine hydrochloride for about 17 hours. The in vitro drug release from the proposed system was best explained by the Korsmeyer-Peppas model. The values of the diffusion exponent in the Korsmeyer-Peppas model ranged between 0.47 ± 0.02 and 0.66 ± 0.02, which appeared to indicate a coupling of the diffusion and erosion mechanisms, anomalous non-Fickian transport. Conclusion: It was concluded that the proposed floating drug delivery system, based on the superporous hydrogel composite containing Chitosan as a composite material, is promising for stomach-specific delivery of Ranitidine hydrochloride.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3922    
    Printed139    
    Emailed5    
    PDF Downloaded488    
    Comments [Add]    
    Cited by others 3    

Recommend this journal