Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 151  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission




 
SYMPOSIUM
Year : 2010  |  Volume : 2  |  Issue : 3  |  Page : 248-252 Table of Contents     

Nutrition in emergencies: Issues involved in ensuring proper nutrition in post-chemical, biological, radiological, and nuclear disaster


Nutrition and Biochemistry Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi - 110054, India

Date of Submission02-Jun-2010
Date of Decision02-Jul-2010
Date of Acceptance06-Jul-2010
Date of Web Publication16-Aug-2010

Correspondence Address:
Som Nath Singh
Nutrition and Biochemistry Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi - 110054
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0975-7406.68507

Rights and Permissions
   Abstract 

Accidental or deliberate exposure to chemical, biological, radiological, and nuclear (CBRN) agents poses considerable threat throughout the world. Under such conditions, ensuring proper nutrition is a difficult task due to contamination of food available in the affected area. Generally, food is not prepared or served in an environment contaminated by CBRN agents. Foods that are properly packed need to be decontaminated from outside before use. These agents get incorporated in to food chain. Therefore, especially the foliage vegetables, milk and meat products from affected area are not fit for consumption. Potassium iodide has protective role, as radioiodine uptake into the thyroid can be blocked by its pharmacological doses. This is most effective when taken before exposure, but still has significant effects up to five to six hours postexposure. The antioxidant vitamins and minerals may be included in therapeutic feeding programs, as they are known to protect against oxidative stress. Minimum requirement of calories and nutrients are similar to other disasters and are discussed in the present review.

Keywords: Chemical, biological, radiological, and nuclear agents, decontamination, nutrients, potassium iodide administration


How to cite this article:
Singh S. Nutrition in emergencies: Issues involved in ensuring proper nutrition in post-chemical, biological, radiological, and nuclear disaster. J Pharm Bioall Sci 2010;2:248-52

How to cite this URL:
Singh S. Nutrition in emergencies: Issues involved in ensuring proper nutrition in post-chemical, biological, radiological, and nuclear disaster. J Pharm Bioall Sci [serial online] 2010 [cited 2017 Nov 22];2:248-52. Available from: http://www.jpbsonline.org/text.asp?2010/2/3/248/68507

The occurrence of both natural and human-made emergencies has risen in recent years resulting in large number of affected communities, refugees, and displaced persons. Drought, flood, earthquakes, and crop destruction by diseases or pests cause nature-induced famines while war and civil conflicts create man-made famines. Deliberate use of chemical, biological, radiological, and nuclear (CBRN) agents as an act of terrorism/war or accidents involving them is a threat to any society. [1] Accidental exposure of chemicals and radiation are not a rare phenomenon these days. Major emergencies often results in food shortage, impair the nutritional status of population, and causes excessive mortality in almost all age groups. Nutrition is, therefore, a key public health concern in emergency management. Malnutrition in one or more of its various forms is a main feature during calamities. When nutritional needs of affected population or a subgroup of population are not met completely, sign of malnutrition emerge among helpless or vulnerable individuals. There are underweight children, anemic mothers, marasmic babies, vitamin deficiency diseases, i.e., blindness, scurvy, beriberi, pellagra, and other deficiency diseases are also observed. [2] Knowledge of nutritional requirements for management of emergencies is important because of the following reasons:

  1. Assessment of nutritional needs of individuals, vulnerable groups, families, and population
  2. Monitoring of nutrient intake in these groups
  3. Ensuring that adequate quantities of food are being procured/made available for rations, supplements, etc.


Identification of most vulnerable groups is also essential and generally these are groups with additional nutrient requirements, e.g., pregnant and lactating women, infants and young children, single adults, e.g., widows and widowers in older age group. Besides these, patients suffering from degenerative diseases like diabetes, cancer, and immunodeficiency also need special attention.

In the initial stages of disaster there is instability, acute shortage, and mass movement of people. The victims are totally dependent on aid. There are inevitable delays in evaluation, requesting for planning, receiving donations, transport, and formation of distribution system. At this stage management is generally controlled by internal government and nongovernmental organizations (NGOs). The second stage of famine (usually after six months) is a stage of establishment. The affected people are organized or they organize themselves and use newer coping strategies, i.e., starting cultivation, setting up of small home industry, and selling of labor. At this stage relief can be more targeted towards more needful persons.

Guidelines for the identification and management of malnutrition have been published by various international and NGOs. These include Mιdicins Sans Frontiθres, the World Health Organization, United Nations High Commissioner for Refugees, The United Nations Children's Fund, and World Food Programme. [2],[3],[4] In addition, food security, nutrition, and food aid are included in the minimum standards set by The Sphere Project. The Sphere Project was launched in 1997 by a group of humanitarian NGOs and the Red Cross and Red Crescent movement. Sphere project has developed several tools, the key tool being the handbook which is available online. [5] The issues related to CBRN have also been reviewed with highlighting role of pharmacists. [6],[7],[8] Present review briefly summarizes the nutritional requirements during emergencies with highlighting key issues of food safety during CBRN disaster.


   Information Required for Management of Emergencies Top


Management or intervention needs accurate information about actual situation and includes many nonnutritional components in the programs, even though food is the most compelling basic necessity. The factors which need to be considered are as follows:

  1. Population size, geographic dispersal of population, map of affected area including location of camps, etc
  2. Age groups
  3. Current nutritional status
  4. Nutritional deficiencies and endemic diseases
  5. Purchasing power and coping mechanisms and market prices
  6. Access to potable water
  7. Fuel supply
  8. Assess to food, seeds, tools, etc
  9. Seasonality and forecast system
  10. Cultural beliefs, taboos
  11. Threats to security, political, and military situations
  12. Underlying causes of the crisis


In major emergencies, most urgently needed action is to prevent death and illness caused by malnutrition. Basic energy and protein requirements are primary concern, but micronutrient needs must also be met if blindness, disability, and deaths are to be avoided.


   Nutrient Requirements During Emergencies Top


Daily energy requirement and safe protein intake

The estimated mean daily per capita energy requirement of 2070 kcal rounded up to 2100 kcal is based on WHO technical report No 724 published in 1985 and on the following assumptions:

  • The age/sex distribution of the population is characteristic of developing countries
  • The mean height of adult men and women are 169 and 155 cm, respectively, which is the approximate value in sub-Saharan Africa
  • The body mass index (Kg/m 2 ) is between 20 to 22
  • Physical activity is light
  • All infants are breast-fed from birth to six months, and half of the infants of 6 to 11 months are still breast-feeding and deriving half of their energy and protein requirements from breast milk.


Safe daily protein intake from an average mixed diet of cereals, pulses, and vegetables is estimated to be 46 g.

Micronutrient and other specific nutrient requirement

The recommended average daily per capita intake of various specific nutrients for typical population requiring emergency food aid in developing countries is given in [Table 1].
Table 1 :Recommended mean daily per capita nutrient intake for emergency food in developing country

Click here to view



   Major Nutritional Deficiency Diseases in Emergencies Top


Protein-energy malnutrition

Even in normal times, protein-energy malnutrition (PEM) is a problem is many developing countries most commonly affecting children between ages of six months to five years; in times of nutritional emergencies, primarily the more acute form of PEM is observed that has to be dealt with. These are characterized by rapid loss of weight and may affect larger number of older children, adolescents, and adults than usual. Infants and children suffering from severe PEM must be treated as soon as possible to avoid hunger deaths. Selective feeding program should be initiated for PEM-affected individuals and these include supplementary feeding programs (SFPs) providing extra 500 to 700 kcal/day from cooked food or by distribution of dry take-home rations (1000 - 1200 kcal/day). Breast-feeding must be encouraged. Blanket SFP should be needed only temporarily when malnutrition rates (weight for height below median -2 Standard Deviation (SD)) exceeds 15 or 10% in the presence of other aggravating factors. Targeted supplementary feeding (i.e., extra food given to selected individuals) is indicated if the malnutrition rate exceeds 10 or 5% in presence of other aggravating factors, e.g., high mortality and/or epidemic infectious diseases. Therapeutic feeding is required to reduce death rate among infants and young children. A rehabilitative diet, with high-energy foods (providing 150 - 20 kcal and 2 - 3 g of protein/kg body weight daily) should be served at frequent intervals. For first few days, there should be close medical supervision and feeding should be made at every three hours on a 24-h basis. Mothers should feed their sick children themselves. Broad spectrum antibiotics for treatment of emerging infections, immunization against measles, and normal doses of vitamin A should be made available.

Micronutrient deficiencies

Micronutrient deficiencies are more common during calamities due to lack of diversified food items and nonavailability of fresh foods. All forms of vitamin and micronutrient deficiency diseases can be seen in affected population if preventive measures have not been taken in time. These include iron deficiency anemia, vitamin A deficiency blindness, beriberi, pellagra, edema, and goiters. There are several approaches for preventing onset of micronutrient deficiencies in emergency situation affecting large populations, which are as follows:

  • Increasing the daily ration that will allow a surplus to be sold for other purposes like procuring fruits and vegetable.
  • Varying the composition of food basket such as pulses, groundnuts, fresh fruits and vegetables, and red palm oil. A better alternative is local production of fruits and vegetables in home gardens.
  • Including micronutrient fortified foods in ration, e.g., cereals/pulse blends, iodized salt, vitamin A enriched skim milk or vegetable oils.
  • Providing supplementation when there is likely to be a specific deficiency based on dietary assessment and overt signs and symptoms.


Assessment and surveillance of nutritional status and relief measures in emergencies

During nutritional emergency, relief foods may be scarce and may need to be provided preferentially (targeted) to the more needy people. Food relief programs should be planned and implemented on the basis of initial, rapid nutrition assessment followed by systemic surveys and continues monitoring (surveillance) of nutritional conditions. Suitable arrangements must be made for evaluating nutritional status at levels of communities (to assess extent of severity of malnutrition and micronutrient deficiencies and composition of emergency ration; to ensure that fuel and cooling utensils are available; and to monitor changes in nutritional status over a period of time) and of individuals (to screen for supplementary or therapeutic feeding programs [TFPs]).

Various simple indicators may be used such as:

  1. Weight for height
  2. Body mass index (weight in kg/squire of height in meters) of adults
  3. Mid upper arm circumference can be used as an alternative for initial screening
  4. Edema is an essential indicator when Kwashiorkor is present.


Nutritional relief program and interventions

A general feeding program is required during first stage when the affected population does not have sufficient food to meet nutritional needs. If the population is entirely dependent upon external aid, the general ration must provide for a minimum intake of 2100 kcal per person per day and more if population is already malnourished, exposed to cold, or engaged in heavy work [Table 2]. Besides being nutritionally balanced, the general ration should be acceptable culturally, fit for consumption, and easily digestible for children and other affected vulnerable groups. Although nutrient needs are different for different age groups in a family, same general ration components should be provided for each person, regardless of age; families would divide ration among themselves. The general ration is normally provided dry, for cooking at home.
Table 2 :Mean energy requirements and recommended adjustments for different activity levels, environmental temperatures and food losses during transport

Click here to view


Because of the following reasons, distribution of cooked food should be avoided except as a short-term measure that should be stopped as soon as people have necessary arrangements to prepare their meals:

  • Such program is often culturally inappropriate and may cause offence.
  • Hygiene is difficult to ensure.
  • Food intakes are often lower and difficult to meet needs of young children.


For distribution of cooked food, locally available fuel and local methods for making fire can be used. Individuals may be asked to collect and bring wood, cow dung, etc for fuel and if collection is difficult or there are chances of deforestation in area, kerosene oil should be used as alternative.

In second stage, SFP is given for vulnerable groups and TFP are provided to those already severely affected by malnutrition or deficiency diseases.

For distribution of items ration cards should be issued and maintained. Effectiveness of program should be monitored at regular intervals.


   Issues Involved in Ensuring Proper Nutrition in Post-CBRN Disaster Top


Food must be protected from CBRN contamination. Consuming contaminated food may cause illness injury or may be fatal. Foods that are packed in cans, bottles, airtight foil, or film wraps are generally not contaminated by nuclear fallout as long as they remain packaged. [6] Insulated food containers and refrigerators are excellent protection from fallout, and are easy to decontaminate. The two types of biological agents are pathogens and toxins. Stringent sanitation in preparing and serving food along with pest and rodent control is required for protection against contamination by pathogens. To protect food from toxins and chemical agents, food must be stored in sealed, airtight containers and containers should be decontaminated before opening. [1] Heat is the best way to decontaminate biologically contaminated food. In case of chemical exposure food must be discarded, as fatty foods absorb nerve and blistering agents and decontamination is impossible.

The contaminants enter the food chain; therefore, food from the affected area should not be consumed until it is tested safe. Radioactive iodine is transmitted to human breast milk, contaminating this valuable source of nutrition to infants. Cow and buffalo milk, staple diet of children can also be quickly contaminated if radioactive material settles onto grazing areas.

In many European countries, levels of radionuclide such as I-131, Cs-134/137, and Sr-90 in milk, dairy products, vegetables, meat, and fish were found increased immediately after Chernobyl's catastrophe in April 1986. Measurable amounts of Chernobyl contaminants were found in food products like pasta, chesses, juices, tea, thyme, caraway seeds, and apricots imported from Turkey, Italy, Austria, West Germany, Greece, Yugoslavia, Hungary, Sweden, and Denmark. Milk (7 - 8%) and other products (13 - 16%) from Belarus and Ukraine had Cs-137 exceeding permissible limits even in 2007. Average levels of incorporated Cs-137 and Sr-90 have increased instead of declining from 1991 to 2005 in heavily contaminated territories of Belarus, Ukraine, and European Russia. [9] The ion exchange treatment of milk, which is somewhat expensive, can eliminate more than 90% of the radionuclide of concern, i.e., Sr-90, I-131, and Cs-137. [10]

Potassium iodide (KI), the compound used in iodized salt, when ingested immediately before, during, or shortly after exposure to radioiodine blocks uptake of inhaled or ingested radioiodine. KI is effective in preventing radiation-induced thyroid effects. The guidelines for use of KI are given by American Academy of Pediatrics. [8] The KI can be taken with beverages to mask its salty taste and recommended doses are summarized in [Table 3]. People living near nuclear power plants should have access to KI as adjunct to evacuation and sheltering. [11],[12],[13] When treatment with KI is contraindicated, iodine-free thionamide or potassium perchlorate are suggested. [14] However, in hot and humid climates, this hygroscopic chemical has a poor shelf life due to hydrolytic loss of iodine vapors. On the other hand, another iodine-rich salt, potassium iodate, is quite stable and has a much longer shelf life and also has better taste and is preferred. Use of apple-pectin food additives is helpful in decorporation of Cs-137. Between 1996 and 2007, a total of more than 160,000 Belarusian children received pectin food additives during 18- to 25-days treatment (5 g twice a day). Application of various pectin-based food additives and drinks using apple, currents, grapes, etc is the most effective way for individual radioprotection (decorporation) under circumstances when consumption of radioactivity contaminated food is unavoidable. [15]
Table 3 :Recommended doses of KI for protection against radioiodine exposure

Click here to view


Medicinal plants like Podophyllum hexandrum, Hippophe rhamnoides, Radiola imbricate, and Tinospora cordifolia have been found to have promising efficacy in experimental animals against radiation exposure. [16],[17],[18],[19],[20],[21] Much work is going on in this area for identification of active constituents of these plants, and radioprotective nutraceuticals may be available in near future. One of the mechanisms of radioprotection by plant products is their antioxidant activity.

 
   References Top

1.Thornton R, Court B, Meara J, Murray V, Palmer I, Scott R, et al. Chemical, biological, radiological and nuclear terrorism: An introduction for occupational physicians. Occup Med 2004;54:101-9.  Back to cited text no. 1      
2.World Health Organization. The management of nutrition in major emergencies. 2000.  Back to cited text no. 2      
3.Mιdicins Sans Frontiθres. MSF Nutrition Guidelines. 1995.   Back to cited text no. 3      
4.World Health Organization. WHO Community emergency preparedness: A manual for managers and policy makers. 1999.   Back to cited text no. 4      
5.The Sphere Project. Humanitarian Charter and Minimum Standards in Disaster Response. 2004. Available from: http://www.sphereproject.org [Last accessed on 2010 Jun 17].  Back to cited text no. 5      
6.Goel R, Chawla R, Kumar V, Silambarasan M, Sharma RK. Pharmacist in the Management of CBRN Disasters. Pharma Review 2009;42:61-8.  Back to cited text no. 6      
7.Sharma RK. Creating awareness, raising preparedness and honing radiological emergency response: A glimpse into the future. Ind J Radiat Res 2009;6:7-9.   Back to cited text no. 7      
8.Committee on Environmental Health. Radiation Disasters and Children. Pediatrics2003;111:1455-66. Available from: http://www.pediatrics.org/cgi/content/111/6/1455 . [Last accessed on 2010 Jun 17].  Back to cited text no. 8      
9.Nesterenko AV, Nesterenko VB, Yablokov AV. Chernobyl′s radioactive contamination of food and people. Annals N Y Aacad Sci 2009;1181:289-302.  Back to cited text no. 9      
10.Patel AA, Prasad SR. Decontamination of radioactive milk-A review. Int J Radiation Biol 1993;63:405-12.  Back to cited text no. 10      
11.US Food and Drug Administration, Center for Drug Evaluation and Research. Guidance Document: Potassium Iodide as a Thyroid Blocking Agent in Radiation Emergencies. Available from: http://www.fda.gov/cder/guidance/4825fnl.htm [Last accessed on 2010 Jun 17].  Back to cited text no. 11      
12.Balk SJ, Miller RW. FDA issues KI recommendations. AAP News 2002;20:99.  Back to cited text no. 12      
13.US Food and Drug Administration. Center for Drug Evaluation and Research. Home Preparation Procedure for Emergency Administration of Potassium Iodide Tablets to Infants and Children Using 65 Milligram (mg) Tablets. 2000 Available from: http://fda.gov/cder/drugprepare/kiprep65mg.htm [Last accessed on 2010 Jun 17].  Back to cited text no. 13      
14.Kroizman-Sheiner E, Brickner D, Canfi A, Schwarzfuchs D. Blocking of thyroid against I-130 following a nuclear disaster. Harefuah 2005;144:497-501.  Back to cited text no. 14  [PUBMED]    
15.Nesterenko VB, Nesterenko AV. Decorporation of chernobyl radionuclides. Annals N Y Aacad Sci 2009;1181:303-10.  Back to cited text no. 15      
16.Arora R, Gupta D, Chawla R, Sagar R, Sharma A, Kumar R, et al. Radioprotection by plant products: Present status and future prospects. Phytother Res 2005;19:1-22.  Back to cited text no. 16  [PUBMED]  [FULLTEXT]  
17.Chawla R, Arora R, Kumar R, Sharma A, Prasad J, Singh S, et al. Antioxidant activity of fractionated extracts of rhizomes of high -altitude Podophyllum hexandrum: Role in radiation protection. Mol Cellular Biochem 2005;273:193-208.   Back to cited text no. 17      
18.Chawla R, Arora R, Singh S, Sagar RK, Sharma RK, Kumar R, et al. Radioprotective and antioxidant activity of fractionated extracts of berries of Hippophae rhamnoides. J Medicinal Food 2007;10:101-9.  Back to cited text no. 18      
19.Arora A, Singh S, Sagar RK, Chawla R, Kumar R, Puri SC, et al. Radiomodulatory and free radical scavenging activity of the fractionated aquo-alcoholic extract of the adaptogenic autraceutical (Rhodiola)- A comparative in vitro assessment with ascorbate. J Dietary Suppl 2008;5:147-63.  Back to cited text no. 19      
20.Arora R, Chawla R, Singh S, Kumar R, Sharma AK, Puri SC, et al. Radioprotection by Himalayan High-Altitude Region Plants. In: Sharma RK, Arora R, editors. Herbal Drugs: A Twenty-first Century Perspective, New Delhi: M/s Jaypee Brothers Medical Publishing (P) Limited;2006. p. 301-25.   Back to cited text no. 20      
21.Arora R, Chawla R, Singh S, Sagar RK, Kumar R, Sharma AK, et al. Bioprospection for Radioprotective Molecules from Indigenous Plants. In: Govil GN, Chief editor. Recent Progress in Medicinal Plants. Vol. 16-Phytomedicine.). P.O. Box-722200, 77072. Houston, Texas, U.S.A: Studium Press LLC; 2006. p. 179-219.  Back to cited text no. 21      



 
 
    Tables

  [Table 1], [Table 2], [Table 3]


This article has been cited by
1 Impact of the Great East Japan Earthquake on feeding methods and newborn growth at 1 month postpartum: results from the Fukushima Health Management Survey
Hyo Kyozuka,Shun Yasuda,Makoto Kawamura,Yasuhisa Nomura,Keiya Fujimori,Aya Goto,Seiji Yasumura,Masafumi Abe
Radiation and Environmental Biophysics. 2016;
[Pubmed] | [DOI]
2 Biological importance of reactive oxygen species in relation to difficulties of treating pathologies involving oxidative stress by exogenous antioxidants
Ivo Juránek,Dragana Nikitovic,Dimitrios Kouretas,A. Wallace Hayes,Aristidis M. Tsatsakis
Food and Chemical Toxicology. 2013;
[Pubmed] | [DOI]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
    Information Requ...
    Nutrient Require...
    Major Nutritiona...
    Issues Involved ...
    References
    Article Tables

 Article Access Statistics
    Viewed2943    
    Printed135    
    Emailed0    
    PDF Downloaded78    
    Comments [Add]    
    Cited by others 2    

Recommend this journal