Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 2095  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission




 
 Table of Contents  
ORIGINAL ARTICLE
Year : 2013  |  Volume : 5  |  Issue : 1  |  Page : 61-65  

A validated RP-HPLC method for simultaneous determination of propranolol and valsartan in bulk drug and gel formulation


1 Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, New Delhi, India
2 Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia

Date of Submission21-Dec-2011
Date of Decision22-Feb-2012
Date of Acceptance21-May-2012
Date of Web Publication28-Jan-2013

Correspondence Address:
Mohammed Aqil
Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, New Delhi
India
Login to access the Email id

Source of Support: All India Council for Technical Education (AICTE), New Delhi, (Grant # 8023/BOR/RPS.157/2006.07), Conflict of Interest: None


DOI: 10.4103/0975-7406.106573

Rights and Permissions
   Abstract 

Objective: A simple, precise, and stability indicating high performance liquid chromatography (HPLC) method was developed and validated for the simultaneous determination of propranolol hydrochloride and valsartan in pharmaceutical dosage form. Materials and Methods: The method involves the use of easily available inexpensive laboratory reagents. The separation was achieved on Hypersil ODS C-18 column (250*4.6 mm, i.d., 5 μm particle size) with isocratic flow with UV detector. The mobile phase at a flow rate of 1.0 mL/min consisted of acetonitrile, methanol, and 0.01 M disodium hydrogen phosphate (pH 3.5) in the ratio of 50:35:15 v/v. Results: A linear response was observed over the concentration range 5-50 μg/mL of propranolol and the concentration range 4-32 μg/mL of valsartan. Limit of detection and limit of quantitation for propranolol were 0.27 μg/mL and 0.85 μg/mL, and for valsartan were 0.45 μg/mL and 1.39 μg/mL, respectively. The method was successfully validated in accordance to ICH guidelines acceptance criteria for linearity, accuracy, precision, specificity, robustness. Conclusion: The analysis concluded that the method was selective for simultaneous estimation of propranolol and valsartan can be potentially used for the estimation of these drugs in combined dosage form.

Keywords: Propanalol, RP-HPLC, valsartan


How to cite this article:
Imam SS, Ahad A, Aqil M, Sultana Y, Ali A. A validated RP-HPLC method for simultaneous determination of propranolol and valsartan in bulk drug and gel formulation. J Pharm Bioall Sci 2013;5:61-5

How to cite this URL:
Imam SS, Ahad A, Aqil M, Sultana Y, Ali A. A validated RP-HPLC method for simultaneous determination of propranolol and valsartan in bulk drug and gel formulation. J Pharm Bioall Sci [serial online] 2013 [cited 2020 Feb 18];5:61-5. Available from: http://www.jpbsonline.org/text.asp?2013/5/1/61/106573

Liquid chromatography is the most widely used analytical tool in the pharmaceutical industry and reversed-phase is the most frequently used mode. During the drug development process, liquid chromatographic methods are used to determine the quality of the drug substance (active pharmaceutical ingredient) and drug product. Valsartan (VALS) [Figure 1] is a tetrazol-byphenil-valinic derivative of losartan, structurally characterized by the presence of a sole heterocyclic structure. [1] VALS has shown to be effective in decreasing blood pressure values (in monotherapy or in combination with other anti-hypertensive drugs) and treating heart failure. [2],[3] VALS is rapidly absorbed following oral administration, with a rather poor bioavailability of about 25%. Peak plasma concentrations of VALS occur 2 to 4 hours after ingestion. Methods such as high performance liquid chromatography (HPLC), [4],[5],[6] and simultaneous UV spectrophotometric methods [7],[8] are reported for estimation of VALS alone or in combination with other agents. However, no method is available for simultaneous determination of VALS with beta blocker.
Figure 1: Chemical structure of valsartan

Click here to view


Propranolol hydrochloride (PROP), [Figure 2] chemically 1-[(1-methylethyl) amino]-3-(1-naphthylenyloxy)-2-propranolol, is a non-selective β-adrenergic antagonist with no intrinsic sympathomimetic activity. [9],[10] It is used in the management of hypertension, phaeochromocytoma, thyrotoxicosis, angina pectoris, myocardial infarction, and cardiac arrhythmias . Several methods are presently available to measure PROP like LC-MS, [11] and spectrometric methods. [12] Indian Pharmacopoeia describes a spectrometric method, [13] whereas USP describes a HPLC method [14] for assaying the drug. HPLC methods for determination of beta-blockers such as PROP, either alone or in combination with other drugs for both in-vivo studies [15],[16] and in-vitro studies [17] are abundant in literature. According to the information extracted from literature, to date, there is not even a single method reported for the simultaneous determination of PROP and VALS in pharmaceutical formulations. The objective of this work was to develop a simple, precise, and rapid column liquid chromatography (LC) procedure that would serve as an assay method for combination drug product of VALS and PROP.
Figure 2: Chemical structure of propranolol

Click here to view



   Experimental Top


Chemicals and reagents

Propranolol hydrochloride was received as gratis sample from Dr. Reddy's Lab, India, and Valsartan was received as gift sample from Ranbaxy Research Laboratories Ltd, Gurgaon, India. Acetonitrile (HPLC grade), methanol (HPLC grade) disodium hydrogen phosphate, and acetic acid glacial (analytical reagent grade) were purchased from E-Merck Ltd. (Mumbai, India). Ultra-purified HPLC grade water was obtained from Milli-Q® system (Millipore, Milford, MA, USA) water purification unit. Mobile phase was filtered using 0.45 μ nylon filters made by Millipore (USA) and was sonicated using sonicator.

HPLC instrumentation and chromatographic conditions

HPLC system (Agilent Technologies, USA) equipped with a LC-LC-20AT pump, an SPD-20A variable wavelength detector (set at 250 nm), a CBM-20A interface module with Agilent LC Ezchrome software and a Rheodyne injection valve with a 20 μL loop was used for development and evaluation of this method. A Hypersil ODS C-18 column (250*4.6 mm, i.d., 5 μm particle size) was used. The mobile phase was composed of acetonitrile, methanol, and 0.01 M disodium hydrogen phosphate (pH 3.5) in the ratio of 50:35:15 v/v. Flow rate of the mobile phase was selected as 1 ml/min. Peak identity was confirmed by spectrum, and retention time comparison and the HPLC system was operated at room temperature (25 ± 2°C). The mobile phase was prepared daily and degassed by ultrasonication before use.

Preparation of standard solution

The standard solution was prepared by taking 50 mg of PROP and 20 mg of VALS and transferred into a 100 ml volumetric flask and diluted with mobile phase. The solution was sonicated for 15 minutes to completely dissolve both the components. It was then cooled, and the volume was made up to the mark with mobile phase. The above solution was further diluted with mobile phase to obtain a final concentration of 10 μg/ml for PROP and 16 μg/ml for VALS. The solution was filtered through 0.45 μ nylon filters before analysis.

Calibration curve

Calibration curves were prepared by taking appropriate aliquots of standard PROP and VALS stock solutions in different 10 ml volumetric flask and diluted up to the mark with mobile phase to obtain final concentrations of 4, 8, 12, 16, 20, 24, 28, 32 μg/ml of VALS and 5, 10, 20, 30, 40, 50 μg/ml of PROP. Standard solutions were injected through 20 μl loop system, and chromatograms were obtained using 1.0 ml/min mobile phase flow rate. The effluent was monitored at 250 nm. Calibration curve was constructed by plotting average peak area against concentration, and regression equation was computed.

Preparation of sample solution (gel)

Accurately-weighed gel equivalent to 10 mg of PROP and 40 mg of VALS in 50 ml transferred to volumetric flask, methanol was added and sonicated for 15 minutes to extract all the drugs from the gel formulation. The solution was cooled and then filtered by using 0.45 μ nylon filters. The filtrate was transferred to a 25 ml volumetric flask and diluted to the mark with methanol. The final concentration was achieved 16μg/ml for VALS and 10 μg/ml for PROP. The mean values of peak areas of 5 such determinations were calculated, and the drug content in the gel was quantified using the calibration curve.

Method validation

The proposed method was validated [18] by parameters viz. linearity range, precision, accuracy, specificity, robustness, selectivity, limit of quantitation (LOQ), and limit of detection (LOD).

Linearity

Stock solutions of PROP and VALS were prepared as described earlier. Serial dilution of the stock solution by removal of suitable aliquots were undertaken to yield calibration curves over the concentration range of 4-32 μg/ml for VALS and 5-50 μg/ml for PROP, respectively. 5 replicate analyzes of each of the concentrations were used to establish the calibration curve.

Precision

The precision study was assessed by evaluating the chromatographic responses of repeated injections (n = 5) of known concentrations of both PROP and VALS over the concentration ranges studied. The intra-day precision refers to the use of analytical procedure within a laboratory over a short period of time using the same operator with the same equipment. The inter-day precision involves estimation of variations in analysis when a method is used within a laboratory on different days, by same analysts.

Accuracy

The accuracy study was determined by standard addition methodby injection of solution (n = 3) of known concentrations of both drugs that had been prepared from new stock solutions.

Specifity

To check the specifity of the proposed method, a synthetic mixture of VALS and PROP was prepared with commonly occurring ingredients that are present in most gel formulations. The comparison of its chromatograms with the chromatograms of the standard solution was done along with the percentage recovery of both the analytes.

Limit of quantitation and limit of detection

The parameters LOD and LOQ were determined on the basis of signal to noise ratio, LOD and LOQ was calculated by the method, which was based on the standard deviation (S.D.) of the response and the slope (S) of the calibration curve at levels approximating the LOD and LOQ. LOD and LOQ were determined as follows.

LOD = 3.3 × Standard deviation of y intercept/Slope of calibration curve
LOQ = 10 × Standard deviation of y intercept/Slope of calibration curve

Robustness

As defined by the ICH, the robustness of an analytical procedure refers to its capability to remain unaffected by small and deliberate variations in method parameters. [19] The robustness was studied by evaluating the effect of small but deliberate variations in the chromatographic conditions. The conditions studied were flow rate (altered by ± 0.2 ml/min), mobile phase composition (buffer ± 5%), buffer pH (altered by ± 0.2), and use of LC columns from different batches.


   Results and Discussion Top


In this work, a simple, sensitive, and validated HPLC method has been developed for simultaneous estimation of PROP and VALS using liquid chromatography with ultraviolet detection. A number of mobile phases were initially attempted to elute both components simultaneously and to achieve sharp and gaussian-shaped peaks. The best mobile phase composition was then found to be acetonitrile, methanol, and 0.01 M disodium hydrogen phosphate pH (3.5), in the ratio of 50:35:15 (v/v). Under the mentioned chromatographic conditions, sharp peaks belonging to PROP and VALS were obtained at retention times of 6.62 and 9.76 minutes, respectively. The proposed chromatographic method was validated using ICH guidelines by parameters viz performing linearity, selectivity, robustness, accuracy, repeatability, limits of detection, and quantitation.

Linearity

The linearity of an analytical method is its ability of an analytical method to show a directly-proportional relationship of a quantitative response to a specific concentration of an analyte within a given specified range of concentrations. The range of a method may be defined as the interval between the upper and lower limits of quantitation to which the method produces test results that are proportional to the analyte concentration or to which a linear calibration model may be applied within a known confidence interval. The results of the validation procedure for linearity reveal that the above assay was linear over the concentration range studied and yielded regression coefficients of R 2 = 0.9988 for PROP and R 2 = 0.9966 for VALS. The relevant equations for these are Y = 18559.3x + 131.7 and Y = 15039x + 633.8 for PROP and VALS, respectively, shown in [Table 1]. The test for linearity of the proposed analytical method yielded R 2 values that were greater than 0.990 for both HPLC systems used during validation. Therefore, the linearity of the method is suitable for the quantitation of PROP and VALS in pharmaceutical dosage forms.
Table 1: Analytical parameters of propranolol, and valsartan

Click here to view


Accuracy (Recovery studies)

Accuracy can be expressed in terms of the % bias, which represents the percentage error difference between a measured value and a reference value. The excellent recoveries of standard addition method [Table 2] suggested the good accuracy of the proposed methods. It is clearly evident that the method can be considered accurate as the % RSD was <2% for all determinations.
Table 2: Accuracy of the proposed HPLC method

Click here to view


Precision

Intra- and inter- day constructions of calibration curves showed the intermediate precision of the method. It is expressed as % R.S.D. for a statistically-significant number of samples. The % R.S.D. values in the regression lines prepared on the same day, and different days were within acceptable the limits [Table 3].
Table 3: Statistical evaluation of precision of developed method

Click here to view


Specificity

The specificity of the HPLC method developed for the analysis of PROP and VALS can be demonstrated from the chromatograms as shown in [Figure 3] and [Figure 4]. Specificity and selectivity were studied for the examination of the presence of interfering endogenous components, working solution containing PROP, and VALS were prepared with methanol and mobile phase. The results indicate that there is not much variation in the retention time of standard and test formulation. None of the impurities were interfering in the assay. As is evident in figure with the peaks of interest, viz., PROP, VALS are free from interference from formulation excipients, the solvent front and from each other. This indicates the method is selected and specific for determination VALS and PROP simultaneously.
Figure 3: Chromatograms of propranolol and valsartan reference samples

Click here to view
Figure 4: Chromatograms of propranolol and valsartan test samples

Click here to view


Limit of detection and limit of quantification

The LOD and LOQ of VALS were found to be 0.45 and 1.39 μg/ml, respectively, while those of PROP were found 0.27 and 0.85 μg/ml, respectively. RSD (%) of 6 replicate injections of VALS at LOD (0.45 μg/ml) and LOQ (1.39 μg/ml) were 11.28 and 3.71, respectively. Similarly, % RSD of 6 replicate injections of PROP at LOD (0.27 μg/ml) and LOQ (0.85 μg/ml) were 14.33 and 3.53, respectively. These values [Table 1] indicated that the method was very sensitive to quantify both the drugs.

Robustness of method

In the developed RP-HPLC method, small deliberate variations in the optimized method parameters were done. The effects of change in flow rate, mobile phase ratio, and buffer pH on the retention time and % recovery were studied. The results showed that the slight variations on the chromatographic conditions have negligible effect on the chromatographic parameters, showing the method is highly robust for its intended use. The results are given in [Table 4].
Table 4: Robustness study of developed method

Click here to view


Assay of gel

The application of the method was assessed by quantifying the propranolol and valsartan in laboratory developed gel formulation. The results are given in [Table 5], which show high percentage recoveries and low percent RSD values.
Table 5: Results of analysis propranolol and valsartan in gel formulation

Click here to view



   Conclusion Top


The proposed method is simple, sensitive, and reproducible and hence can be used for simultaneous determination of propranolol and valsartan in bulk as well as in pharmaceutical preparations. Statistical analysis of the results has been carried out revealing high accuracy and good precision. The RSD for all parameters was found to be less than 2, which indicates the validity of method and assay results obtained by this method are in fair agreement. The developed method can be used for routine quantitative simultaneous estimation of propranolol and valsartan in pharmaceutical preparations.


   Acknowledgement Top


The authors acknowledge the financial support by All India Council for Technical Education (AICTE), New Delhi, (Grant # 8023/BOR/RPS-157/2006-07).

 
   References Top

1.Bauer JH, Reams GP. The angiotensin II type 1 receptor antagonists. A new class of antihypertensive drugs. Arch Intern Med 1995;155:1361-8.  Back to cited text no. 1
[PUBMED]    
2.Kim S, Yoshiyama M, Izumi Y, Kawano H, Kimoto M, Zhan Y, et al. Effects of combination of ACE inhibition and angiotensin receptor blocker on cardiac remodeling. Circulation 2001;103:148-54.  Back to cited text no. 2
[PUBMED]    
3.Palatini P, Malacco E, Fogari R, Carretta R, Bonaduce D, Bertocchi F, et al. A multicenter randomized double-blind study of valsartan/hydrochlorothiazide combination versus amlodipine in patients with mild to moderate hypertension. J Hypertens 2001;19:1691-6.  Back to cited text no. 3
    
4.Daneshtalab N, Lewanczuk RZ, Jamali F. High performance liquid chromatographic analysis of angiotensin II receptor antagonist Valsartan using a liquid extraction method. J Chromatogr B Analyt Technol Biomed Life Sci 2002;766:345-59.  Back to cited text no. 4
[PUBMED]    
5.Gonzalez L, Lopez JA, Alonso RM, Jimenez RM. Fast screening method for the determination of angiotensin II receptor antagonists in human plasma by high-performance liquid chromatography with fluorimetric detection. J Chromatogr A 2002;949:49-60.  Back to cited text no. 5
    
6.Li H, Wang YW, Jiang Y. A liquid chromatography/tandem mass spectrometry method for the simultaneous quantification of Valsartan and Hydrochlorothiazide in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2007;852:436-42.  Back to cited text no. 6
    
7.ªatana E, Altimay S, Goger GN, Sibel A. Ozkan SA. Simultaneous determination of valsartan and hydrochlorothiazide in tablets by first-derivative ultraviolet spectrophotometry and LC. J Pharm Biomed Anal 2001;25:1009-13.  Back to cited text no. 7
    
8.Tatar S, Saglík S. Comparison of UV- and second derivative-spectrophotometric and LC methods for the determination of valsartan in pharmaceutical formulation. J Pharm Biomed Anal 2002;30:371-5.  Back to cited text no. 8
    
9.Moffat AC, Osselton MD, Widdop B, Galichet LY. Clarke's analysis of drugs and poisons. 3 rd ed. London: Pharmaceutical Press; 2004. p. 1495-7.  Back to cited text no. 9
    
10.Katzung BG (editor). Basic and clinical pharmacology. 8 th ed. McGraw-Hill: Lange Medical Books; 2001. p. 155-78, 245-64.  Back to cited text no. 10
    
11.Abdel-Hamid ME. Comparative LC-MS and HPLC analyses of selected antiepileptic and beta-blocking drugs. Farmaco 2000;55:136-45.  Back to cited text no. 11
    
12.El-Eman AA, Belal FF, Moustafa MA, El-Ashry SM, El-Sherbiny DT, Hansen SH. Spectrophotometric determination of propranolol in formulations via oxidative couplingwith 3-methylbenzothiazoline-2-one hydrazone. Farmaco 2003;58:1179-86.  Back to cited text no. 12
    
13.Government of India, Ministry of Health and Family Welfare. Pharmacopoeia of India Vol. II. New Delhi: Controller of Publication; 1996. p. 635.  Back to cited text no. 13
    
14.The United States Pharmacopoeia 30, The National Formulary 25, United States Pharmacopoeial Convention, Rockville, USA; 2007. p. 3057.  Back to cited text no. 14
    
15.Jones A, LoBrutto R, Kazekevich YV. Effect of the counter anion type and concentration on liquid chromatography retention of β-blockers. J Chromatogr A 2002;964:179-87.  Back to cited text no. 15
    
16.Ranta VP, Toropainen E, Talvitie A, Auriola S, Urtii A. Simulateneous determination of eight β-blockers by gradient high performance liquid chromatography with combined ultraviolet and fluorescence detection in corneal permeability studies in vitro. J Chromatogr B Analyt Technol Biomed Life Sci 2002;772:81-7.  Back to cited text no. 16
    
17.Santoro MIRM, Cho HS, Kedor-Hackmann ERM. Enantiomeric separation and quantitative determination of propranolol in tablets by chiral high performance liquid chromatography. Drug Dev Ind Pharm 2001;27:217.693-7.  Back to cited text no. 17
    
18.International conference on harmonization ICH(Q2)R1: Validation of analytical procedures: Test and Methodology, ICH.Geneva, Switzerland 2005.  Back to cited text no. 18
    
19.International Conference on Harmonisation, Topic Q2B, Validation of Analytical Methods: Methodology. The Third International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), Yokohama, Japan, 1997.  Back to cited text no. 19
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5]


This article has been cited by
1 Development of a nano plastic antibody for determination of propranolol using CdTe quantum dots
Ali A. Ensafi,Nafiseh Kazemifard,Behzad Rezaei
Sensors and Actuators B: Chemical. 2017; 252: 846
[Pubmed] | [DOI]
2 Simultaneous densitometric analysis of amlodipine, hydrochlorothiazide, lisinopril, and valsartan by HPTLC in pharmaceutical formulations and human plasma
Jui J. Pandya,Mallika Sanyal,Pranav S. Shrivastav
Journal of Liquid Chromatography & Related Technologies. 2017; : 1
[Pubmed] | [DOI]
3 Control of Drug Dissolution Rate from Film Dosage Forms Containing Valsartan
Yoshifumi Murata,Kyoko Kofuji,Chieko Maida
International Scholarly Research Notices. 2016; 2016: 1
[Pubmed] | [DOI]
4 Novel spectrophotometric methods for simultaneous determination of Amlodipine, Valsartan and Hydrochlorothiazide in their ternary mixture
Hayam M. Lotfy,Maha A. Hegazy,Shereen Mowaka,Ekram Hany Mohamed
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015; 140: 495
[Pubmed] | [DOI]
5 Sevoflurane-Sulfobutylether-ß-Cyclodextrin Complex: Preparation, Characterization, Cellular Toxicity, Molecular Modeling and Blood-Brain Barrier Transport Studies
Sergey Shityakov,István Puskás,Katalin Pápai,Ellaine Salvador,Norbert Roewer,Carola Förster,Jens-Albert Broscheit
Molecules. 2015; 20(6): 10264
[Pubmed] | [DOI]
6 Chemometric-assisted spectrophotometric methods and high performance liquid chromatography for simultaneous determination of seven ß-blockers in their pharmaceutical products: A comparative study
Eman A. Abdel Hameed,Randa A. Abdel Salam,Ghada M. Hadad
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015; 141: 278
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Experimental
    Results and Disc...
   Conclusion
   Acknowledgement
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed4002    
    Printed75    
    Emailed0    
    PDF Downloaded228    
    Comments [Add]    
    Cited by others 6    

Recommend this journal