Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 1555  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission


ORIGINAL ARTICLE
Year : 2013  |  Volume : 5  |  Issue : 4  |  Page : 277-289

Synthesis, antifungal activity, and QSAR studies of 1,6-dihydropyrimidine derivatives


1 Department of Pharmaceutical Chemistry, Shri Sarvajanik Pharmacy College, Mehsana, Gujarat, India
2 Department of Pharmaceutical Chemistry, S. K. Patel College of Pharmaceutical Educational and Research, Ganapat University, Mehsana, Gujarat, India

Correspondence Address:
Chirag Rami
Department of Pharmaceutical Chemistry, Shri Sarvajanik Pharmacy College, Mehsana, Gujarat
India
Login to access the Email id

Source of Support: Shri Sarvajanik Pharmacy College, Mehsana, Gujarat, India, Conflict of Interest: None


DOI: 10.4103/0975-7406.120078

Rights and Permissions

Introduction: A practical synthesis of pyrimidinone would be very helpful for chemists because pyrimidinone is found in many bioactive natural products and exhibits a wide range of biological properties. The biological significance of pyrimidine derivatives has led us to the synthesis of substituted pyrimidine. Materials and Methods: With the aim of developing potential antimicrobials, new series of 5-cyano-6-oxo-1,6-dihydro-pyrimidine derivatives namely 2-(5-cyano-6-oxo-4-substituted (aryl)-1,6-dihydropyrimidin-2-ylthio)-N-substituted (phenyl) acetamide (C1-C41) were synthesized and characterized by Fourier transform infrared spectroscopy (FTIR), mass analysis, and proton nuclear magnetic resonance ( 1 H NMR). All the compounds were screened for their antifungal activity against Candida albicans (MTCC, 227). Results and Discussion: Quantitative structure activity relationship (QSAR) studies of a series of 1,6-dihydro-pyrimidine were carried out to study various structural requirements for fungal inhibition. Various lipophilic, electronic, geometric, and spatial descriptors were correlated with antifungal activity using genetic function approximation. Developed models were found predictive as indicated by their square of predictive regression values (r 2pred ) and their internal and external cross-validation. Study reveals that CHI_3_C, Molecular_SurfaceArea, and Jurs_DPSA_1 contributed significantly to the activity along with some electronic, geometric, and quantum mechanical descriptors. Conclusion: A careful analysis of the antifungal activity data of synthesized compounds revealed that electron withdrawing substitution on N-phenyl acetamide ring of 1,6-dihydropyrimidine moiety possess good activity.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2782    
    Printed55    
    Emailed1    
    PDF Downloaded177    
    Comments [Add]    
    Cited by others 1    

Recommend this journal