Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 2170  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission




 
 Table of Contents  
DENTAL SCIENCE - ORIGINAL ARTICLE
Year : 2014  |  Volume : 6  |  Issue : 5  |  Page : 165-170  

Administration of bisphosphonate (ibandronate) impedes molar tooth movement in rabbits: A radiographic assessment


1 Department of Orthodontics, Panineeya Mahavidhyalaya Institute of Dental Sciences, Dilshuknagar, Hyderabad, Andhra Pradesh, India
2 Department of Orthodontics, JKKN Dental College, Komarapalyam, Namakkal, India
3 Department of Orthodontics, G. Pulla Reddy Dental College and Hospital, Kurnool, Andhra Pradesh, India
4 Department of Orthodontics Rajah Muthiah Dental College, Annamalai University, Chidambaram, Tamilnadu, India

Date of Submission18-Apr-2014
Date of Decision18-Apr-2014
Date of Acceptance23-Apr-2014
Date of Web Publication25-Jul-2014

Correspondence Address:
Dr. K Raja Sigamani
Department of Orthodontics Rajah Muthiah Dental College, Annamalai University, Chidambaram, Tamilnadu
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0975-7406.137440

Rights and Permissions
   Abstract 

Introduction: Bisphosphonate (Bp)-ibandronate is a pharmacological agent, exhibits antiosteoclastic or antiresorptive activity and used to treat osteolytic or osteopenic disorders. BP-ibandronate may also interfere during orthodontic tooth movement. The aim of this study was to examine the influence of locally administered Bp-ibandronate on experimental tooth movement in rabbits. Materials and Methods: Twenty rabbits were divided into two groups- "10" served as Group-1 (control) and other "10" as Group-2 (experimental). Both groups received nickel-titanium closed coil springs with 100 g force between mandibular molar and incisors. Group-1 animals received 1 ml normal saline and Group-2 animals received ibandronate solution (0.3 mg/kg body weight) locally, mesial to the mandibular molar on the 1 st , 7 th , and 14 th day of the experiment. A total of "40" lateral cephalograms were taken from both groups on the 1 st and 21 st day using a digital X-ray unit (Siemens X-ray systems, 300 mA Pleomophos analog, 2008, Germany). Individually, each animal's radiograph was traced manually and superimposed. The molar tooth movement was measured with the help of a standard metric scale. Results: The Student's t-test has been done to compare the mean values of Group-1 (4.650 ± 0.363) and Group-2 (2.030 ± 0.291) and the difference was statistically significant (P < 0.001). Conclusion: The retarded molar tooth movement was noticed in local drug administered rabbits, which could be beneficial in orthodontics to control the undesired tooth movement.

Keywords: Bisphosphonate-ibandronate, lateral cephalogram, local administration, orthodontic tooth movement, rabbits


How to cite this article:
Venkataramana V, Kumar S S, Reddy B V, Cherukuri A S, Sigamani K R, Chandrasekhar G. Administration of bisphosphonate (ibandronate) impedes molar tooth movement in rabbits: A radiographic assessment. J Pharm Bioall Sci 2014;6, Suppl S1:165-70

How to cite this URL:
Venkataramana V, Kumar S S, Reddy B V, Cherukuri A S, Sigamani K R, Chandrasekhar G. Administration of bisphosphonate (ibandronate) impedes molar tooth movement in rabbits: A radiographic assessment. J Pharm Bioall Sci [serial online] 2014 [cited 2019 Nov 12];6, Suppl S1:165-70. Available from: http://www.jpbsonline.org/text.asp?2014/6/5/165/137440

Orthodontic tooth movement (OTM) is made possible by the application of constant force on a tooth using mechanical devices such as springs, elastics, arch wires, screws, etc., During OTM, the periodontal ligament (PDL) and the alveolar bone undergo a wide range of remodeling process that is, selective deduction of bone on the pressure side (resorption) and the addition of bone on the opposite side (apposition). Several chemical mediators, cytokines, and inflammatory mediators also play an important role during OTM. [1] The remodeling of PDL tissue is a core factor for OTM.

In orthodontic patients, the intake of various medications might affect the OTM in a negative manner (deceleration of OTM) or positive manner (acceleration of OTM). NSAIDs (diclofenac sodium, [2] indomethacin, [3] acetyl salicylic acid, [4] ibuprofen [5] ), leukotrienes antagonist - zileuton, [6] phenytoin, [7] bisphosphonates (Bps), [8],[9],[10],[11],[12],[13],[14],[15],[16],[17],[18],[19],[20] etc., are some important medical agents accountable for deceleration of OTM; contrary, local administered vitamin D, [21] parathyroid hormone hormones, [22] prostaglandins, [23] cytokines, [24] corticosteroids [25] (long-term use and dose dependent manner), etc., are accountable for acceleration of OTM.

Bisphosphonates are a group of medications developed in the mid-19 th century and widely used in the management of skeletal metabolic disorders such as osteoporosis, malignant bone metastatic conditions, Paget's disease, osteogenesis imperfecta, etc. [26],[27] Before invading into medical application, they were used in textile and fertilizer industries as anticorrosive agents to prevent the formation of calcium carbonate deposits in the pipe lines. [28]

Bisphosphonates are synthetic analogs of inorganic pyrophosphate. Pyrophosphates are present profusely in the body fluids including saliva; they have two phosphonate (PO 3 ) groups linked with an oxygen molecule (P-O-P). The synthetic Bps have a similar structure, but the oxygen molecule is replaced by the carbon. The substitution of carbon for oxygen in Bp gives maximum resistance to thermal, chemical and enzymatic degradation and increase bone matrix accumulation and extreme long half-life. The carbon is linked with the long chain (R 2 ) and short chain (R 1 ); R2 determines the potency and R1 determines the chemical properties and pharmacokinetics [Figure 1]. [27]
Figure 1: Structure of inorganic pyrophosphate (left) contains oxygen atom and its synthetic analogue bisphosphonate (right) where the oxygen atom is replaced with carbon atom

Click here to view


Bisphosphonates are categorized into nonnitrogenous group or basic type (clodronate, etidronate, and tiludronate) and nitrogenous group (alendronate, pamidronate, risedronate, ibandronate, zoledronate, etc.). The presence of the nitrogen atom increases the drug potency. Both groups of Bps act in different pathways, but eventually they exhibit antiosteoclastic activity. Nonnitrogenous Bps incorporates into nonhydrolysable analogs of adenosine triphosphate (ATP), interfering with ATP-dependent pathways and resulting in osteoclast apoptosis, [27] whereas nitrogenous Bps inhibits the enzyme of the mevalonate pathway called farnesyl pyrophosphate synthase, which in sequence inhibits the enzymatic modification of small guanosine triphosphate-binding proteins in osteoclasts and interrupts the cytoskeletal function and intracellular signaling, which triggers the osteolytic action and ultimately leads to osteoclast apoptosis. [27],[28] Apart from antiosteoclastic activity, Bps also expresses the antiangeogenic effect (antivascular effect) by obstructing endothelial growth factor. [29]

Once Bp enters the circulation 50% of the drug is excreted through urine. The bioavailability of oral administered Bps is low (1-10%), when compared with intravenous administered Bps (up to 50%). [26] The higher amount of Bps accumulates in the human jaws (10 times higher than other bones), because the greater amount of remodeling occurs during regular mastication process. [30] The lethal adverse effect of Bp pertained to dentistry that is, "osteonecrosis of the jaw" (ONJ) or "bisphosphonate related osteonecrosis of jaws (BRONJ), was documented by Marx in 2003, [31] has alarmed the entire dental fraternity all over the world. The possible linkages between the occurrence of ONJ and Bp therapy, could be due to the antiosteoclastic activity, [28] antiangiogenic activity, [29] compromised blood supply to the jaw bones in Bp recipients, [30] augmented bone density due to the suppression of bone resorption, [26] etc., In Bp users, any general dental procedures and orthodontic procedures should be carried out with a special consideration because of the possibility of occurrence of BRONJ. The major general dental procedures (extractions, implants, surgeries, etc.) and orthodontic procedures (extraction therapies, excessive force application, attempt to treat major malocclusions, etc.) should be avoided and conservative management is advocated. [32],[33] Until date, there is no evidence of BRONJ was recorded in orthodontic patients along with Bp usage; but in such patients, the prior conditions to BRONJ such as sclerotic zones in the alveolus, widened PDL, hyper mineralized areas in the extraction sites, etc., were reported and eventually resulted with some undesirable effects such as an impediment of OTM, difficulty in extraction space closure, compromised root parallelism, etc. [33]

In orthodontic terminology, the anchorage is explained as the resistance acquired by the tooth/teeth against (usually molars) the OTM. Usually, molars are multirooted teeth, which offer better anchorage, and to augment the effect of anchorage certain components (trans palatal arch, Nance arch, etc.) are attached to the molars. Apart from these mechanical anchorage devices, investigators have been trying to generate a "pharmacological anchorage method," as an alternative approach that is, local administration of certain drugs (particularly Bps) near to the tooth/teeth are intended to produce resistance against OTM, [8],[9],[10],[11],[12],[13] and to facilitate OTM of the desired tooth/teeth.

In this study, Bp-ibandronate, a Nitrogenous Bp was used. The chemical name for ibandronate is (1-hydroxy-3- [methylpentlyamino] propylidene) bis-phosphonic acid, monosodium salt, monohydrate with the molecular formula C 9 H 22 NO 7 P 2 Na H 20 and a molecular weight of 359.24. The aim of this study is to examine the effect of Bp-ibandronate on OTM in rabbits following local administration using lateral cephalic radiographs.


   Materials and Methods Top


Animal model

Twenty New Zealand rabbits, 16-week-old, weighing between 3.5 and 4 kg (3.75 kg mean weight) were chosen for this experiment. This animal experiment was carried out in accordance with the guidelines issued by Institutional Animal Ethics Committee of Annamalai University, Tamil Nadu, India, with an approval code CPCSEA 169/99, proposal No. 854. All rabbits were segregated into two groups' that is, Group-1 (control) and Group-2 (experimental). The general health status of each animal was monitored throughout the phase of the experiment by us and the veterinarian staff. Animals were fed with nutritional diet supplied in pallets, which were crushed into small pieces to prevent damage to the orthodontic appliance (nickel-titanium [NiTi] coil spring). Throughout the study, the animals were kept under conditions of room temperature between 24°C and 26°C.

Pharmacological agents used

Ketamine (50 mg/kg body wt) along with diazepam (5 mg/kg body wt) and atropine (0.2 mg/kg body wt) intramuscular injection were used for anesthesia. The Bp-ibandronate, (injection bandrone, 6 mg/6 ml vial supplied by Arihanth Medi Pharma, Chennai, India) was used as an experimental drug. Ibandronate 0.3 mg/kg body weight was administered locally that is, mesial to the rabbit's mandibular molar in the mucoperiosteum region.

Orthodontic force element

In this experiment, both animal groups have received sentalloy NiTi closed coil springs with 100 g force NiTi (GAC International, New York). This coil spring was stretched and ligated between the mandibular molar and incisors [Figure 2]. [34],[35]
Figure 2: Experimental animal with the appliance in place and local drug administration

Click here to view


Experiment technique

The duration of the experiment was carried out for 21 days. On the 1 st day, animals received the appliance under anesthesia. A specially designed mouth prop was placed following application of anesthesia. The grooves were made around the cervical margins of molar and incisors. A ligature wire of 0.009" was passed around the mandibular first molar with the help of artery forceps. The stainless steel ligature wire was knotted mesial to the molar and both ends of wire were passed into the coil spring and twisted, the excess wire was cut and the projected wire was bent toward the cervical margin of the molar. The other end of the spring was stretched with the help of an electronic force gauge (LT Lutron FG 5000A Taiwan) at the 100 g force level and ligated around the incisor. Circumferentially ligature wires were seated into the grooves at both ends (cervical margins of incisors and molars). These cervical margins were etched with 37% phosphoric acid and coated with light cure composite material (3M Transbond XT primers and the composite 3M unit) in order to secure the appliance without dislodgment and also minimize the irritation caused by the wire projections.

All control animals (Group-1) received 1 ml normal saline and correspondingly experimental animals (Group-2) received Bp-ibandronate of 0.3 mg/kg body weight on the mesial aspect of rabbit's mandibular first molar into the mucoperiosteum for 3 times (1 st , 7 th and 14 th day) [Figure 2]. In a while, all animals were exposed to radiography to acquire cephalic radiographs on the 1 st day along with appliance under anesthesia and on the 21 st day along with application under anesthesia [Figure 3].
Figure 3: Digital X-ray unit (Siemens X-ray systems, 300 mA Pleomorphism analog, 2008, Germany)

Click here to view


Lateral cephalic radiographs

Both groups of animals were exposed to radiation individually on the 1 st and 21 st days, and totally "40" lateral cephalic radiographs were produced using method previously described. The cephalic X-ray films were exposed using a digital Siemens 300 mA Pleomorphism analog digital X-ray unit. The exposure time (0.4-0.5 s) and the power settings (60-70 kV, 10 mA) were standardized to all animals. The X-rays were taken with the left side of the head of the animal facing the X-ray tube at a standardized distance of 60 cm away from the tube with animal lying in a supine position [Figure 3]. This technique has been adopted from the previous study. [36] Cephalic radiographs were traced manually using acetate paper and land marks were pointed with micro tip lead pencil [Figure 4]. Individually each animal's lateral cephalic radiographs were superimposed and the magnitude of molar tooth movement in the mesial direction was measured manually using standard metric scale based on two reference points that is, a mesio-occlusal tip of the second molar (M1) to the disto-occlusal tip of the first molar (M2) [Figure 5] and [Figure 6].
Figure 4: Land marks in cephalic radiograph-Na (Nasion), Pa (Parietal bone), Oc (Occipital bone), T (Temporal bone), IL (Incisal tip of lower incisor), M1 (disto-occlusal tip of first mandibular molar), M2 (mesio-occlusal tip of second mandibular molar)

Click here to view
Figure 5: Superimposed radiographic tracing of Group-1 (control) showing greater amount of molar tooth movement (distance between M1 and M2)

Click here to view
Figure 6: Superimposed radiographic tracing of Group-2 (experimental) showing lesser amount of molar tooth movement (distance between M1 and M2)

Click here to view



   Results Top


Statistical analysis - the measured values (in millimeters) collected from both groups following radiographic tracing and superimposition are tabulated [Table 1] and [Table 2]. The mean values between two groups were compared by the Student's t-test. According to this test, it is considered to be statistically significant different between two groups if the P < 0.05. In this study, the mean values of Group-1 (control) (4.650 ± 0.363) and Group-2 (experimental) (2.030 ± 0.291) have shown clear demarcation that is, Group-2 is lesser than the Group-1, and the difference between these two groups was found to be statistically significant (P < 0.001) [Table 2]. The result of the current study has declared that the Group-2 (experimental) animals have shown significant reduction in the magnitude of molar tooth movement than Group-1 (control) [Table 2] and [Graph 1].
Table 1: Measurements-obtained from superimposed radiographs (all measurements in millimeters)

Click here to view
Table 2: Students t test to assess the mean variation between the two groups (n=10)

Click here to view





   Discussion Top


In this study, locally injected Bp-ibandronate has markedly decreased molar tooth movement in the mesial direction which could be due to the expression of the antiresorptive activity (antiosteoclastic activity) in the mesial aspect of molar. [28] Based on previous experiments, it is clearly evident that the locally delivered drugs near to the tooth/teeth structure express its action effectively in impeding tooth movement. [8],[9],[10],[11],[12],[13] In this study also, the readily available Bp-ibandronate at the local site (mesial to the molar), would've taken up by the osteoclasts after stimulation of bone turnover due to the OTM; than the mevalonate pathway is disrupted by the inhibition of farnesyl pyrophosphate synthetase and geranylgeranyl pyrophosphate enzymes, decreased cytoskeletal integrity and intracellular signaling; eventually apoptosis might have taken place in the local site. [28] In this study, the lateral cephalic radiographs were taken for each animal successively on the 1 st and 21 st day, individual animal's radiographs were superimposed and the molar tooth movement was measured manually with metric sale. The position and the distance of the rabbit's head from the X-ray source (70 mm) was constantly maintained in accordance to a similar previous study done by Bryndahl et al. [36] Furthermore, the intra oral installation of appliance [34],[35] and local administration of the drug [8],[9],[10],[11],[12],[13] have been followed from earlier studies.

The basis behind the local Bp administered studies in animals [8],[9],[10],[11],[12],[13] were to determine the possibility of utilizing the adverse effect of Bps (impediment of tooth movement) in a favorable manner to enhance the resistance of that particular tooth/teeth and to move the other teeth effectively.

Igarashi et al. and Adachi et al., [8],[10] examined the effect of 4-amino-1-hydroxybutylidene-1,1-bisphosphonate on OTM following local administration in rats. In this experiment, significant reduced molar tooth movement during expansion and also lesser amount of relapse were noticed following withdrawal of the expansion force which could support the pharmacological induced anchorage and retention phenomenon. In another similar study, Igarashi et al. 1996 [9] have noticed that the topically administered risedronate might be useful in impeding root resorption during OTM following withdrawal of (expansion) orthodontic force. In the current study, limited molar tooth movement was observed in the superimposed lateral cephalic radiographs of local Bp-ibandronate administered animals, which could have hindered the resorption process in PDL by the drug.

Fujimura et al. [12] investigated the effect of Bp in mice after injecting into a site adjacent to the maxillary molar and observed reduction in the tooth movement, number of osteoclasts and root resorption in Bp administered animals than the nondrug administered group. Liu et al., [11] in a rat split mouth study administered clodronate locally close to the molars and found a significant diminution in tooth movement, which is dose dependent. On the experimental side, there is a reduced amount of osteoclasts compared with the control side. In this study at the end of 3 rd week, the local Bp-ibandronate received rabbits have shown a reduced movement of molar tooth, which is statistically significant. This decrease in tooth movement could be due to the expression of antiosteoclastic activity of the drug in the locally injected site.

Venkataramana et al., [13] in a 21 days study on albino rabbits used Bp - Pamidronate as a local injection mesial to the mandibular molar and demonstrated a reduction in mesial molar tooth movement on dissected mandibles and also by osteoclastic quantification. They finally suggested that the locally injected Bp - Pamidronate might be useful to augment the anchorage in future days. In the current study, Bp-ibandronate has also shown the similar effect as pamidronate in reducing tooth movement on local administration.

Apart from local Bp administered studies, some authors have studied the effect of systemic administered Bps [14],[15],[16],[17],[18],[19],[20] in animals during OTM. In these studies, chiefly investigators have noticed impediment of tooth movement and depletion in osteoclastic count, which could be clinically applicable to the Bp using patients undergoing an orthodontic treatment [23],[24] and a special consideration to be given to them. They also suggested that the OTM was inhibited due to the interruption of Bps; this deleterious effect could be utilized in a positive manner on local administration in the future era to restrict (or) control the undesired tooth movement, and to facilitate desired tooth movement.

Ibandronate (nitrogenous Bp) is used in this study because it is more potent than other nitrogenous Bps (except zolendronate) in inhibiting bone resorption, [37] thereby OTM is very well-prevented in local Bp administered animals. In orthodontics, this could be considered as a positive event in terms of producing "pharmacological anchorage method" or "drug-induced anchorage" by local administration.


   Conclusion Top


In the current study, Bp - Ibanronate has been administered locally in order to study its effect on molar tooth movement in rabbits and the significant reduction in the molar tooth movement was noticed, which was elucidated using lateral cephalic radiographs. Bp-ibandronate is an antiresorptive agent and on its local administration it has prevented molar tooth movement in rabbits, which is an unfavorable action in orthodontic perspective. However, in the clinical scenario pertained to orthodontic specialty, this unfavorable action may be utilized to prevent unwanted tooth movement (particularly molar teeth) and to enhance "Pharmacological Anchorage Method" with a local administered drug. Unfortunately, until date this method is confined to animal studies and further studies are obligatory to apply this method in clinical orthodontics.

 
   References Top

1.Krishnan V, Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop 2006;129:469.e1-32.  Back to cited text no. 1
    
2.Kumaran KN, Rajasigamani K, Sethupathy S, Nirmal SM, Venkataramana V. Effect of diclofenac sodium at low concentration level on the rate of orthodontic tooth movement in rat. Ann Essence Dent 2012;4:14-22.  Back to cited text no. 2
    
3.Giunta D, Keller J, Nielsen FF, Melsen B. Influence of indomethacin on bone turnover related to orthodontic tooth movement in miniature pigs. Am J Orthod Dentofacial Orthop 1995;108:361-6.  Back to cited text no. 3
    
4.Wong A, Reynolds EC, West VC. The effect of acetylsalicylic acid on orthodontic tooth movement in the guinea pig. Am J Orthod Dentofacial Orthop 1992;102:360-5.  Back to cited text no. 4
    
5.Arias OR, Marquez-Orozco MC. Aspirin, acetaminophen, and ibuprofen: Their effects on orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2006;130:364-70.  Back to cited text no. 5
    
6.Mohammed AH, Tatakis DN, Dziak R. Leukotrienes in orthodontic tooth movement. Am J Orthod Dentofacial Orthop 1989;95:231-7.  Back to cited text no. 6
    
7.Karsten J, Hellsing E. Effect of phenytoin on periodontal tissues exposed to orthodontic force - An experimental study in rats. Br J Orthod 1997;24:209-15.  Back to cited text no. 7
    
8.Igarashi K, Mitani H, Adachi H, Shinoda H. Anchorage and retentive effects of a bisphosphonate (AHBuBP) on tooth movements in rats. Am J Orthod Dentofacial Orthop 1994;106:279-89.  Back to cited text no. 8
    
9.Igarashi K, Adachi H, Mitani H, Shinoda H. Inhibitory effect of the topical administration of a bisphosphonate (risedronate) on root resorption incident to orthodontic tooth movement in rats. J Dent Res 1996;75:1644-9.  Back to cited text no. 9
    
10.Adachi H, Igarashi K, Mitani H, Shinoda H. Effects of topical administration of a bisphosphonate (risedronate) on orthodontic tooth movements in rats. J Dent Res 1994;73:1478-86.  Back to cited text no. 10
    
11.Liu L, Igarashi K, Haruyama N, Saeki S, Shinoda H, Mitani H. Effects of local administration of clodronate on orthodontic tooth movement and root resorption in rats. Eur J Orthod 2004;26:469-73.  Back to cited text no. 11
    
12.Fujimura Y, Kitaura H, Yoshimatsu M, Eguchi T, Kohara H, Morita Y, et al. Influence of bisphosphonates on orthodontic tooth movement in mice. Eur J Orthod 2009;31:572-7.  Back to cited text no. 12
    
13.Venkataramana V, Rajasigamani K, Madhavan N, Reddy SN, Karthik K, Kumaran KN. Inhibitory effect of bisphosphonate pamidronate on orthodontic tooth movement in New Zealand albino rabbits. J Int Dent Med Res 2012;5:136-42.  Back to cited text no. 13
    
14.Kim TW, Yoshida Y, Yokoya K, Sasaki T. An ultrastructural study of the effects of bisphosphonate administration on osteoclastic bone resorption during relapse of experimentally moved rat molars. Am J Orthod Dentofacial Orthop 1999;115:645-53.  Back to cited text no. 14
    
15.Keles A, Grunes B, Difuria C, Gagari E, Srinivasan V, Darendeliler MA, et al. Inhibition of tooth movement by osteoprotegerin vs. pamidronate under conditions of constant orthodontic force. Eur J Oral Sci 2007;115:131-6.  Back to cited text no. 15
    
16.Seifi M, Aghaeei Pour N. Effect of pamidronate on tooth movement and root resorption in rat. Shahid Beheshti Univ Dent J 2009;27:67-71.  Back to cited text no. 16
    
17.Karras JC, Miller JR, Hodges JS, Beyer JP, Larson BE. Effect of alendronate on orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop 2009;136:843-7.  Back to cited text no. 17
    
18.Choi J, Baek SH, Lee JI, Chang YI. Effects of clodronate on early alveolar bone remodeling and root resorption related to orthodontic forces: A histomorphometric analysis. Am J Orthod Dentofacial Orthop 2010;138:548.e1-8.  Back to cited text no. 18
    
19.Sirisoontorn I, Hotokezaka H, Hashimoto M, Gonzales C, Luppanapornlarp S, Darendeliler MA, et al. Orthodontic tooth movement and root resorption in ovariectomized rats treated by systemic administration of zoledronic acid. Am J Orthod Dentofacial Orthop 2012;141:563-73.  Back to cited text no. 19
    
20.Kaipatur NR, Wu Y, Adeeb S, Stevenson TR, Major PW, Doschak MR. Impact of bisphosphonate drug burden in alveolar bone during orthodontic tooth movement in a rat model: A pilot study. Am J Orthod Dentofacial Orthop 2013;144:557-67.  Back to cited text no. 20
    
21.Takano-Yamamoto T, Kawakami M, Yamashiro T. Effect of age on the rate of tooth movement in combination with local use of 1,25(OH) 2D3 and mechanical force in the rat. J Dent Res 1992;71:1487-92.  Back to cited text no. 21
    
22.Soma S, Matsumoto S, Higuchi Y, Takano-Yamamoto T, Yamashita K, Kurisu K, et al. Local and chronic application of PTH accelerates tooth movement in rats. J Dent Res 2000;79:1717-24.  Back to cited text no. 22
    
23.Kale S, Kocadereli I, Atilla P, Aºan E. Comparison of the effects of 1,25 dihydroxycholecalciferol and prostaglandin E2 on orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2004;125:607-14.  Back to cited text no. 23
    
24.Ren Y, Vissink A. Cytokines in crevicular fluid and orthodontic tooth movement. Eur J Oral Sci 2008;116:89-97.  Back to cited text no. 24
    
25.Kalia S, Melsen B, Verna C. Tissue reaction to orthodontic tooth movement in acute and chronic corticosteroid treatment. Orthod Craniofac Res 2004;7:26-34.  Back to cited text no. 25
    
26.Licata AA. Discovery, clinical development, and therapeutic uses of bisphosphonates. Ann Pharmacother 2005;39:668-77.  Back to cited text no. 26
    
27.Fleisch H. Development of bisphosphonates. Breast Cancer Res 2002;4:30-4.  Back to cited text no. 27
    
28.Rogers MJ, Gordon S, Benford HL, Coxon FP, Luckman SP, Monkkonen J, et al. Cellular and molecular mechanisms of action of bisphosphonates. Cancer 2000;88:2961-78.  Back to cited text no. 28
    
29.Wood J, Bonjean K, Ruetz S, Bellahcène A, Devy L, Foidart JM, et al. Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid. J Pharmacol Exp Ther 2002;302:1055-61.  Back to cited text no. 29
    
30.Melo MD, Obeid G. Osteonecrosis of the maxilla in a patient with a history of bisphosphonate therapy. J Can Dent Assoc 2005;71:111-3.  Back to cited text no. 30
    
31.Marx RE. Pamidronate (aredia) and zoledronate (zometa) induced avascular necrosis of the jaws: A growing epidemic. J Oral Maxillofac Surg 2003;61:1115-7.  Back to cited text no. 31
    
32.Tanwir F, Mirza AA, Tauseef D, Mahar A. Bisphosphonates and the field of dentistry. Eur J Gen Dent 2014;3:11-16.  Back to cited text no. 32
  Medknow Journal  
33.Zahrowski JJ. Bisphosphonate treatment: An orthodontic concern calling for a proactive approach. Am J Orthod Dentofacial Orthop 2007;131:311-20.  Back to cited text no. 33
    
34.Roche JJ, Cisneros GJ, Acs G. The effect of acetaminophen on tooth movement in rabbits. Angle Orthod 1997;67:231-6.  Back to cited text no. 34
    
35.Yu JY, Lee W, Park JH, Bayome M, Kim Y, Kook YA. Histologic effects of intentional-socket-assisted orthodontic movement in rabbits. Korean J Orthod 2012;42:207-17.  Back to cited text no. 35
    
36.Bryndahl F, Legrell PE, Eriksson L, Isberg A. Titanium screw implants in optimization of radiographic evaluation of facial growth in longitudinal animal studies. Angle Orthod 2004;74:610-7.  Back to cited text no. 36
    
37.Dooley M, Balfour JA. Ibandronate. Drugs 1999;57:101-8.  Back to cited text no. 37
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6]
 
 
    Tables

  [Table 1], [Table 2]


This article has been cited by
1 Effect of compressive loading and incubation with clodronate on the RANKL/OPG system of human osteoblasts
S. Grimm,C. Walter,A. Pabst,J. Goldschmitt,H. Wehrbein,C. Jacobs
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie. 2015; 76(6): 531
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
    Materials and Me...
   Results
   Discussion
   Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed1471    
    Printed49    
    Emailed1    
    PDF Downloaded57    
    Comments [Add]    
    Cited by others 1    

Recommend this journal