Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 2986  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission


DENTAL SCIENCE - ORIGINAL ARTICLE
Year : 2015  |  Volume : 7  |  Issue : 6  |  Page : 616-622

Influence of erbium, chromium-doped: Yttrium scandium-gallium-garnet laser etching and traditional etching systems on depth of resin penetration in enamel: A confocal laser scanning electron microscope study


1 Department of Orthodontics and Dentofacial Orthopaedics, Kannur Dental College, Kannur, India
2 Department of Orthodontics and Dentofacial Orthopaedics, Rajah Muthiah Dental College and Hospital, Annamalai University, Chidambaram, Tamil Nadu, India
3 Department of Orthodontics and Dentofacial Orthopaedics, P. S. M College of Dental Science and Research, Thrissur, Kerala, India

Correspondence Address:
Dr. Vishal Vijayan
Department of Orthodontics and Dentofacial Orthopaedics, Kannur Dental College, Kannur
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0975-7406.163571

Rights and Permissions

Objective: This study was performed to assess the resin tag length penetration in enamel surface after bonding of brackets to identify which system was most efficient. Methodology: Our study was based on a more robust confocal microscopy for visualizing the resin tags in enamel. Totally, 100 extracted human first and second premolars have been selected for this study and were randomly divided into ten groups of 10 teeth each. In Group 1, the buccal enamel surface was etched with 37% phosphoric acid (3M ESPE), Group 2 with 37% phosphoric (Ultradent). In Groups 5, 6, and 7, erbium, chromium-doped: Yttrium scandium-gallium-garnet (Er, Cr: YSGG) laser (Biolase) was used for etching the using following specifications: Group 5 (1.5 W/20 Hz, 15 s), Group 6 (2 W/10 Hz, 15 s), and Group 7 (2 W/20 Hz, 15 s). In Groups 8, 9, and 10, Er, Cr: YSGG laser (Biolase) using same specifications and additional to this step, conventional etching on the buccal enamel surface was etched with 37% (3M ESPE) after laser etching. In Groups 1, 5, 6, 7, 8, 9, and 10 3M Unitek Transbond XT primer was mixed with Rhodamine B dye (Sigma-Aldrich, Germany) to etched surface and then cured for 20 s. In Group 2, Ultradents bonding agent was mixed with Rhodamine B. In Group 3, 3M Unitek Transbond PLUS, Monrovia, USA, which was mixed with Rhodamine B dye (Sigma-Aldrich, Germany). Group 4, with self-etching primer (Ultradent-Peak SE, USA) was mixed with Rhodamine B dye (Sigma-Aldrich, Germany). Later (3M Unitek, Transbond XT, Monrovia USA) [Figure 1] was used to bond the modified Begg brackets (T. P. Orthodontics) in Groups 1, 3, 5, 6, 7, 8, 9, and 10. In Groups 2, 4 Ultradent-Peak LC Bond was used to bond the modified brackets. After curing brackets were debonded, and enamel depth penetration was assessed using confocal laser scanning microscope. Results: Group J had a mean maximum depth of penetration of 100.876 μm, and Group D was the least having a maximum value of 44.254 μm. Conclusions: Laser alone groups had comparable depths of penetration to that of self-etching groups but much lower than conventional acid etched groups.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1412    
    Printed20    
    Emailed0    
    PDF Downloaded50    
    Comments [Add]    
    Cited by others 1    

Recommend this journal