Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 816  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission


ORIGINAL ARTICLE
Year : 2016  |  Volume : 8  |  Issue : 3  |  Page : 181-187

Synthesis, characterization and in silico biological activity of some 2-(N,N-dimethyl guanidinyl)-4,6-diaryl pyrimidines


1 Department of Pharmaceutical Chemistry, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, India
2 Department of Pharmaceutical Chemistry, Gokula Krishna College of Pharmacy, Sullurpeta, Andhra Pradesh, India

Correspondence Address:
Rajasekhar Komarla Kumarachari
Department of Pharmaceutical Chemistry, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0975-7406.171678

Rights and Permissions

Introduction: As pyrimidine is a basic nucleus in DNA and RNA, it has been found to be associated with diverse biological activities.Pyrimidine derivatives were reported to possess anticonvulsant, antimicrobial, anti-inflammatory, antitumor, and antihistaminic. Recently, our team reported the anti-inflammatory and antimicrobial evaluation of some pyrimidines. Objective: To synthesize, predict and evaluate biological activity of some 2-(N,N-dimethyl guanidinyl)-4,6-diaryl pyrimidines. Experimental: seven new pyrimidines were synthesized by following the standard procedures using substituted aromatic aldehydes, methyl ketones and metformin. After the biological activity was predicted using PASS, Molinspiration and Osiris property explorer, their anthelmintic activity was evaluated using Pheretima posthuma. The structural assignment of the title compounds (P1-7) has been made on the basis of elemental analysis, infrared, 1H-nuclear magnetic resonance and Mass spectral studies. Results: All the synthesized compounds were found to obey Lipinski's rule. All the synthesized compounds scored good bioactivity values as GPCR ligands and kinase inhibitors. Among the test compounds, P5 was found to be more potent anthelmintic inducing paralysis in 36-48 minutes and death in 40-51 minutes. Conclusion and Recommendation: The synthesized compound (P5) possessing methoxy group at position-4 of the benzene ring located at position-4 of pyrimidine exhibited good anthelmintic activity. The study revealed the necessity of synthesizing many more compounds with other substituents at position-4 of the benzene ring located at position-4 of pyrimidine.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2029    
    Printed49    
    Emailed0    
    PDF Downloaded140    
    Comments [Add]    
    Cited by others 1    

Recommend this journal