Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 1566  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission




 
 Table of Contents  
ORIGINAL RESEARCH ARTICLE
Year : 2016  |  Volume : 8  |  Issue : 5  |  Page : 105-109  

In vitro comparative evaluation of mechanical properties of temporary restorative materials used in fixed partial denture


Department of Prosthodontics, J.K.K. Nattraja Dental College, Komarapalayam, Tamil Nadu, India

Date of Submission06-Apr-2016
Date of Decision28-Apr-2016
Date of Acceptance06-May-2016
Date of Web Publication12-Oct-2016

Correspondence Address:
Dr. D Saisadan
Department of Prosthodontics, J.K.K. Nattraja Dental College, Komarapalayam, Tamil Nadu
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0975-7406.191936

Rights and Permissions
   Abstract 

Introduction: Materials used to fabricate provisional restorations can be classified as acrylics or resin composites. Provisional crows can be either prefabricated or custom made. Acrylics: These materials have been used to fabricate provisional restorations since the 1930s and usually available as powder and liquid. They are the most commonly used materials today for both single-unit and multiple-unit restorations. In general, their popularity is due to their low cost, acceptable esthetics, and versatility. Composites: Composite provisional materials use bis-acryl resin, a hydrophobic material that is similar to bis-GMA. Composites are available as auto-polymerized, dualpolymerized and visible light polymerized. Preformed Crowns: Preformed provisional crowns or matrices usually consist of tooth-shaped shells of plastic, cellulose acetate or metal. They are commercially available in various tooth sizes and are usually selected for a particular tooth anatomy. They are commonly relined with acrylic resin to provide a more custom fit before cementation, but the plastic and metal crown shells can also be cemented directly onto prepared teeth. Aims and Objectives: The aim of this study is to choose a material to serve as a better interim prosthesis and to compare three different properties – flexural strength, compressive strength, and color stability. Materials and Methods: The samples were made with three different provisional materials (Revotek LC, Protemp 4, TemSpan). Result: It was inferred from the study that no one material was superior in all three tested parameters.

Keywords: Fixed partial denture, mechanical properties, provisional materials


How to cite this article:
Saisadan D, Manimaran P, Meenapriya P K. In vitro comparative evaluation of mechanical properties of temporary restorative materials used in fixed partial denture. J Pharm Bioall Sci 2016;8, Suppl S1:105-9

How to cite this URL:
Saisadan D, Manimaran P, Meenapriya P K. In vitro comparative evaluation of mechanical properties of temporary restorative materials used in fixed partial denture. J Pharm Bioall Sci [serial online] 2016 [cited 2019 Jul 22];8, Suppl S1:105-9. Available from: http://www.jpbsonline.org/text.asp?2016/8/5/105/191936

Provisionals have to fulfill important functions within the timeframe between preparation of a tooth and until fitting the final fixed metal or ceramic restoration. A well-made provisional fixed partial denture should provide a preview of the future prosthesis and enhance the health of the abutments and periodontium.[1] To reduce tissue toxicity and thermal irritation of the conventional resin systems, new interim restorative materials that contain no methyl methacrylate have been introduced such as visible light cure resin, bis-acrylic composite resins, and visible light and chemical cure (dual cure) resins. Controlled prospective clinical trials on temporary crowns and fixed partial dentures do not exist in the dental literature.[2] These provisional-fixed prostheses must fulfill biologic, mechanical, and esthetic requirements to be considered successful. Resistance to functional loads and removal forces is “mechanical factors” that must be considered when choosing a provisional restorative material for clinical use.

Aims and objectives

The aim of this study is to choose a material to serve as a better interim prosthesis and to compare three different properties – flexural strength, compressive strength, and color stability.

The materials for the comparative study are as follow:

  • Revotek LC
  • Protemp 4
  • TemSpan.



   Materials and Methods Top


The samples were made with three different provisional materials (Revotek LC, Protemp 4, TemSpan) as mentioned above to compare the mechanical properties such as flexural strength, compressive strength, and color stability.

  • Revotek LC (GC Corporation, Japan): Light-cured single component composite resin. Group 1 - Thirty samples made, ten samples each for three properties
  • Protemp 4 (3M ESPE, USA): Chemically cured two component systems. Group 2 - Thirty samples made, ten samples each for three properties
  • TemSpan (Pentron Clinical Technologies, LLC): Dual-cure resin system. Group 3 - Thirty samples made, ten samples each for three properties.


The specimens were fabricated for each material with use of stainless steel molds [Figure 1] and [Figure 2]. The materials were mixed according to the manufacturers recommendations and loaded into the mold. Another glass slab with a plastic matrix was later placed on top of the molds and wiched between two glass slabs.
Figure 1: Stainless steel mold for flexural strength and compressive strength specimens

Click here to view
Figure 2: Stainless steel mold for color stability specimens

Click here to view


Specimen A: According to the ADA specification number 27, size 25 mm × 2 mm × 2 mm samples for comparing flexural and compressive strength values using universal testing machine Instron [Figure 3].
Figure 3: Specimen A samples

Click here to view


Specimen B: Size 20 mm diameter circle, 2 mm thick samples for comparing color stability values using spectrophotometer [Figure 4].
Figure 4: Specimen B samples

Click here to view


Measuring flexural strength

After fabrication and finishing, the specimens were soaked in artificial saliva at 37° for 10 days. Later, all specimens were placed on top of the platform of the universal testing machine to undergo a three-point bend test. A load of 10 kN load cell at a crosshead speed of 0.75 mm/min was applied. The force at fracture was recorded in Newton and calculated in MPa with the use of testing machine software [Figure 5].[3]
Figure 5: Sample under flexural load

Click here to view


Measuring compressive strength

The specimens were fabricated as similar as mentioned above and then placed on top of the platform of the universal testing machine. A load of 10 kN load cell at a crosshead speed of 0.75 mm/min was applied. The force the sample could withstand till the start of deformation was recorded in Newton and calculated in MPa with the use of testing machine software [Figure 6].
Figure 6: Sample under compressive load

Click here to view


Evaluating color stability

To evaluate the color stability of coffee solution, ten specimens of each group were immersed in coffee solution for 2 days. Color measurements were made using spectrophotometer before immersion (i.e., the baseline measurements), 7 days (T7) and 10 days (T10) after immersion [Figure 7].[4],[5]
Figure 7: Sample evaluation using spectrophotometer

Click here to view


The following equation was used to measure color stability:[6],[7]

ΔE = (Δ L*2 + a*2 + b*2)½

where ΔL*, Δa*, Δb* are the differences in L*, a*, and b* values before (T0) and after immersion at each time interval (T7, T10). Student's paired t -test was used to calculate the P value.


   Results Top


Ten samples each from Groups 1 and 2 of specimen A underwent a three-point bending test using a universal testing machine Instron for measurement of flexural and compressive strength. The results obtained were tabulated and graphs were made [Table 1], [Table 2], [Table 3] and [Graph 1] and [Graph 2]. Ten samples each from Groups 1 and 2 of specimen B underwent color analysis testing using spectrophotometer at different immersion periods. The results obtained were tabulated and graphs were made [Table 1], [Table 2], [Table 3] and Graph 3].
Table 1: Readings for flexural strength testing

Click here to view
Table 2: Readings for compressive strength testing

Click here to view
Table 3: Readings for color stability testing

Click here to view



After statistical analysis, the following inference was obtained:

  • Group 2 has more flexural strength and compressive strength values compared to Group 1
  • Group 1 showed least color changes, and hence, it is more color stable compared to Group 2.



   Discussion Top


An ideal provisional must fulfill biological, mechanical, morphological, psychological, and esthetic requirements, with the introduction of composite-based materials, which may be chemical, light, or dual cured acrylic resins have lost their popularity.[8],[9] Diaz-Arnold in their study demonstrated that bis-acrylic-type composite resin exhibited higher microhardness and greater surface integrity than the methacrylate resin materials.[10] Polymerization shrinkage plays a major role in the fit of provisional restoration. Volumetric shrinkage was 6% for polymethyl methacrylate and 1.0–1.7% for composites. Hence, composites allow better marginal fit than polymethyl methacrylate because of less contraction due to polymerization.[11]

Haselton et al . in their study on testing the flexural strength of five methyl methacrylate-based resins and eight bis-acrylic-based resins for provisional crowns and fixed partial dentures demonstrated that flexural strengths vary greatly among provisional materials.[5] 10 samples from each of the two groups were subjected to three different property testings. From the results obtained:

  • Group 2 - Self-cure material – Protemp 4 has more flexural strength and compressive strength
  • Group 1 - Light cure material – Revotek LC is more color stable.
    1. When provisional restoration is to be given in the esthetic region, then urethane dimethacrylate-based material (Revotek LC) can be used
    2. When the provisional restoration has to be placed for a longer span of time, then chemically cured bis-GMA-based material (Protemp 4) can be used
    3. If a provisional long span bridge has to be placed, then chemically cured Bis-GMA-based material (Protemp 4) can be used.



   Conclusion Top


It was inferred from the study that no one material was superior in all three tested parameters. Although these products are made from similar materials, variation in formulation, including the cross-linking agents, appears to have resulted in variations in the performance. Further investigation is required to elucidate the nature of product differences and the way in which these materials respond to the oral environment.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

 
   References Top

1.
Federick DR. The provisional fixed partial denture. J Prosthet Dent 1975;34:520-6.  Back to cited text no. 1
[PUBMED]    
2.
Tjan AH, Grant BE, Godfrey MF 3rd. Temperature rise in the pulp chamber during fabrication of provisional crowns. J Prosthet Dent 1989;62:622-6.  Back to cited text no. 2
    
3.
Ha SR, Yang JH. Comparison of polymer-based temporary crown and fixed partial denture materials by diametral tensile strength. J AdvProsthodont 2010;214-7.  Back to cited text no. 3
    
4.
Caputi S, Traini TA. Provisional gold-resin restoration executed through an indirect-direct procedure: A clinical report. J Prosthet Dent 2000;84:125-8.  Back to cited text no. 4
    
5.
Aloul RK, Hansen ACA. Procedure for provisional prosthesis characterization. J Prosthet Dent 2001;86:665.  Back to cited text no. 5
    
6.
Senay Canny, Murat: The effect of current bleaching agents on the color of light-polymerized composites in vitro . J Prosthet Dent 2003;89:475-78.  Back to cited text no. 6
    
7.
Okubo SR, Kanawati A. Evaluation of visual and instrument shade matching. J Prosthet Dent 1998;80:642-48.  Back to cited text no. 7
    
8.
Yannikakis SA, Zissis AJ, Polyzois GL, Caroni C. Color stability of provisional resin restorative materials. J Prosthet Dent 1998;80:533-9.  Back to cited text no. 8
[PUBMED]    
9.
Young HM, Smith CT, Morton D. Comparative in vitro evaluation of two provisional restorative materials. J Prosthet Dent 2001;85:129-32.  Back to cited text no. 9
[PUBMED]    
10.
Diaz-Arnold AM, Dunne JT, Jones AH. Microhardness of provisional fixed prosthodontic materials. J Prosthet Dent 1999;82:525-8.  Back to cited text no. 10
[PUBMED]    
11.
Haselton DR, Diaz-Arnold AM, Vargas MA. Flexural strength of provisional crown and fixed partial denture resins. J Prosthet Dent 2002;87:225-8.  Back to cited text no. 11
[PUBMED]    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6], [Figure 7]
 
 
    Tables

  [Table 1], [Table 2], [Table 3]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
    Materials and Me...
   Results
   Discussion
   Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed1435    
    Printed29    
    Emailed0    
    PDF Downloaded85    
    Comments [Add]    

Recommend this journal