Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 1026  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission




 
 Table of Contents  
ORIGINAL ARTICLE
Year : 2018  |  Volume : 10  |  Issue : 2  |  Page : 90-95  

Adverse drug reactions attributed to fondaparinux and unfractionated heparin in cardiovascular care unit: An observational prospective pilot study in a tertiary care hospital


1 Department of Pharmacology, Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, Karnataka, India
2 Department of Cardiology, Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, Karnataka, India

Date of Web Publication4-Jun-2018

Correspondence Address:
Dr. Shubhatara Swamy
Department of Pharmacology, Vydehi Institute of Medical Sciences and Research Centre, #82, EPIP Area, Nallurahalli, Whitefield, Bengaluru, Karnataka 560066
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/JPBS.JPBS_17_18

Rights and Permissions
   Abstract 


Introduction: This study was carried out to collect and analyze the adverse drug reactions (ADRs) reported with use of anticoagulants, heparin and fondaparinux. These drugs are vital in the treatment of unstable coronary artery diseases and emergencies. Materials and Methods: A cross-sectional study with active reporting of ADRs from cardiology and medicine department was conducted. The type of reaction was assessed by Rawlins and Thomson criteria, causality by Naranjo probability scale, severity by modified Hartwig criteria, and preventability by Schumock and Thornton criteria. Result: Of the 67 patients observed, 16 showed ADRs. Fifteen reactions were attributable to unfractionated heparin and one to fondaparinux following assessment by the Naranjo causality scale. Severity of the ADRs assessed by modified Hartwig criteria showed that although 12 of 16 (75%) were mild, 4 (25%) were moderate in severity. Modified Schumock and Thornton criteria showed that 9 of 16 (56.25%) reactions could not have been prevented whereas 5 (31.25%) were probably preventable and 2 (12.5%) were definitely preventable. Conclusion: Incidence of ADRs with fondaparinux was lower than with heparin, hence emphasizing its better safety profile. The study also highlights the need for nurses and other caretakers in the coronary care unit to enquire for and report ADRs, particularly with high-potency medicines that are associated with an equally high potential to induce ADRs.

Keywords: ACS, active surveillance, ADRs, anticoagulants, CCU, pharmacovigilance


How to cite this article:
Sharma S, Swamy S, Bhambhani A, Nadig P. Adverse drug reactions attributed to fondaparinux and unfractionated heparin in cardiovascular care unit: An observational prospective pilot study in a tertiary care hospital. J Pharm Bioall Sci 2018;10:90-5

How to cite this URL:
Sharma S, Swamy S, Bhambhani A, Nadig P. Adverse drug reactions attributed to fondaparinux and unfractionated heparin in cardiovascular care unit: An observational prospective pilot study in a tertiary care hospital. J Pharm Bioall Sci [serial online] 2018 [cited 2018 Nov 17];10:90-5. Available from: http://www.jpbsonline.org/text.asp?2018/10/2/90/233700




   Introduction Top


With great advancements in the field of drug therapy, society has had to also bear adverse drug reactions (ADRs), at times of gargantuan proportions. ADR is defined as “any noxious change which is suspected to be due to a drug, occurs at doses normally used in a person, requires treatment or decrease in doses or indicates caution in the future use of the same drug.”[1]

Pharmacovigilance is the science and activities relating to the detection, assessment, understanding, and prevention of adverse effects or any other drug-related problems.[1],[2] The World Health Organization (WHO) established its program for international drug monitoring following the thalidomide disaster in 1961, for promoting pharmacovigilance at a global and national level.[3]

The Pharmacovigilance Program of India (PvPI) is responsible for safeguarding the lives of 1.27 billion Indians. National Co-ordination Programme of PvPI monitors ADRs in Indian population and helps the regulatory authority Central Drugs Standard Control Organization (CDSCO) to take decisions on safe use of medicines.

Acute coronary syndromes (ACSs) and related emergencies are the leading cause of morbidity and mortality in India and place a large financial burden on the health-care system. It is essential to monitor the adverse reactions caused by the drugs used in their treatment. A study conducted by Mohebbi et al.[4] showed that 42 of a total of 189 (22.2%) ADRs reported in an 8-month study analyzing ADRs induced by cardiovascular drugs in coronary care unit (CCU) were serious.

ACS is the unifying term representing a common end result of acute myocardial ischemia seen in unstable angina, non-ST elevated myocardial infarction (NSTEMI), or ST-elevated myocardial infarction. Venous thromboembolism (VTE), a common consequence of ACS, is a very frequent form of vascular disease and impacts a great number of patients worldwide. Acute deep vein thrombosis (DVT) and acute pulmonary embolism (APE) are subsets of VTE and are traditionally treated with anticoagulation.

Fondaparinux and unfractionated heparin are parenterally administered anticoagulants, which are used not only to reduce risk of ischemic events but also to improve long-term mortality and morbidity associated with conditions such as ACS, DVT, or APE. Fondaparinux sodium is a newer synthetic pentasaccharide anticoagulant that specifically inhibits factor Xa, whereas unfractionated heparin inactivates thrombin and factor Xa through an antithrombin-dependent mechanism.[5],[6],[7]

A rare case of fondaparinux-induced major bleeding in a 58-year-old woman prescribed for NSTEMI was assessed by Sharma et al.[8] As this reaction was unpredictable as per the known mechanism of action and was not studied for a dose-dependent response, they could not clearly be labeled it as a type A or B class of ADR.

Reports like these highlight the need for clinicians to have a sound understanding of anticoagulant toxicity and predict the risk of bleeding; hence, the risk–benefit ratio can be assessed.

Studies on ADRs caused by cardiovascular drugs used in CCUs, particularly anticoagulants, have not been well documented in India. It was observed that fondaparinux and heparin are the most prescribed anticoagulants by the cardiologists. Therefore, this study was aimed to detect, document, assess, and report suspected ADRs due to these two drugs. The ultimate aim was to increase the level of awareness about them among all staff (doctors, nurses, and technicians) working in the CCU; to improve pharmacovigilance in the cardiology department; and to compare the ADR reporting surveillance when conducted actively and passively.


   Materials and Methods Top


It was an observational prospective pilot study on the ADRs associated with fondaparinux and unfractionated heparin in ACS, DVT, and APE. The study was carried out following approval from the institutional ethics committee and was conducted over a period of 3 months (February 2016 to April 2016). The study group included all patients admitted into the CCU for ACS, coronary angiogram, coronary angioplasty, percutaneous transluminal coronary angioplasty, or the cardiothoracic and vascular surgery ward for DVT/APE prophylaxis who were on either heparin or fondaparinux. The patients who fulfilled the following criteria were included in the study.

Inclusion criteria included patients with

  • age ≤75 years;


  • body weight >50kg;


  • either sex;


  • diagnosis of ACS, APE, and DVT;


  • prophylactic treatment for ACS, APE, and DVT.


  • Exclusion criteria included patients with

  • congenital or acquired bleeding disorders, severe thrombocytopenia, hemorrhagic stroke, uncontrolled arterial hypertension;


  • ulcerative gastrointestinal conditions;


  • proliferative diabetic retinopathy;


  • recent surgery on the brain, spine, or eyes;


  • known hypersensitivity to heparin or fondaparinux;


  • moderate to severe renal insufficiency.


  • Laboratory investigations (bleeding time, clotting time, activated partial thromboplastin time, prothrombin time, international normalized ratio) were carried out based on the cardiologist’s assessment of the patient’s condition during the treatment course.

    The dose, route, and frequency decided by the consultant cardiologist were as follows:

    • Inj. fondaparinux 2.5mg, subcutaneously, once daily for 5–7 days


    • Inj. unfractionated heparin 5000 IU, intravenously, every 6th hourly for 5–7 days


    The following known adverse effects for both the drugs were enquired for daily until the patient was discharged from the hospital.

  • Fever, nausea, vomiting, rash, headache, abdominal pain or swelling, backache, joint pain, stiffness or swelling, and edema


  • Bleeding from gums when brushing teeth, blood in urine, coughing up blood, heavy bleeding from cuts and wounds, vomiting of blood/coffee-colored vomit, unexplained bruising or purplish areas on the skin, unexplained nosebleeds, and unexpected or unusually heavy menstrual bleeding


  • Constipation and diarrhea


  • Urinary retention and urinary tract infection


  • Dizziness, confusion, and insomnia


  • Hypersensitivity and allergic reactions


  • Other reactions apart from the aforementioned were also enquired for.

    Suspected drug reaction reporting forms from CDSCO were filled out for the same and submitted to the Pharmacovigilance ADR Reporting Cell in the hospital premises.

    They were classified as type A (dose-dependent and predictable) or type B (idiosyncratic with no clear dose–response relationship) according to the system introduced by Rawlins and Thompson in 1977.[9]

    The degree of association of an ADR with a drug was evaluated using Naranjo probability scale,[10] which involves assigning score to a set of questions. The total score for a particular ADR was calculated and the association was termed into one of these categories: definite (score >9), probable (score 5–8), possible (score 1–4), or doubtful (score 0).

    Severity was categorized using modified Hartwig criteria,[11] which has seven severity levels. Levels 1 and 2 indicate mild; levels 3 and 4 indicate moderate; and level 5 and above indicate severe ADRs.[12]

    Preventability of the ADRs as per modified Schumock and Thornton criteria[13] has three categories namely definitely preventable, probably preventable, and not preventable, each consisting of three questions. If the answer to any one of the questions is yes, the ADR is included under that category.[14]


       Results Top


    Demographic profile

    Among the 67 patients observed in this 3-month study, 14 were women and 53 were men. A total of 16 of 67 (23.88%) adverse reactions were observed. Of these 16, 2 were in female patients and 14 were in male patients. Of the study population containing 67 patients, 58 were administered with unfractionated heparin and 9 were administered with fondaparinux. The percentage incidence of ADRs with unfractionated heparin is 15 of 58 (25.86%) whereas that with fondaparinux is 1 of 9 (11.11%). [Figure 1] summarizes that although patients of diverse age groups were present, the highest incidence was in the age group of 50–59 years.
    Figure 1: Age distribution of patients who developed ADRs

    Click here to view


    Nature of the ADRs

    The most frequent ADRs were gastrointestinal in nature, mainly constipation. The only reaction seen with fondaparinux was loose stools and excessive sweating. [Table 1] lists the ADRs that were seen during the study.
    Table 1: Nature and frequency of ADRs

    Click here to view


    Type of suspect ADRs

    The ADRs were categorized based on the Rawlins and Thompson classification into type A (augmented) or type B (bizarre), and most of them were type A as shown in [Table 2]. The most common adverse effects seen were headache lasting for 2–3 days and gastrointestinal disturbances (constipation).
    Table 2: Type of reaction based on Rawlins and Thompson classification

    Click here to view


    Causality assessment

    The causality assessment as per Naranjo scale showed that of 16 reactions, 9 were possibly related and 7 were probably related to the anticoagulants. The single adverse reaction due to fondaparinux was assessed as possibly related.

    Severity of suspect ADRs

    As assessed by modified Hartwig criteria, 12 of 16 reactions (75%) were mild and 4 (25%) were moderate in severity. No severe reactions were seen. Although the adverse reactions to heparin ranged from mild to moderate, the reaction attributed to fondaparinux was mild with a score of 1, as shown in [Figure 2].
    Figure 2: Severity according to modified Hartwig and Siegel

    Click here to view


    Preventability of suspect ADRs

    Modified Schumock and Thornton criteria showed that 9 of 16 (56.25%) reactions could not have been prevented whereas 5 (31.25%) were probably preventable and 2 (12.5%) were definitely preventable, as seen in [Figure 3].
    Figure 3: Preventability according to Schumock and Thornton scale

    Click here to view


    Two major serious reactions

    One of the adverse drug events (ADEs) was that of a massive bleed into the patients Ryle’s tube. The 35-year-old female patient was administered streptokinase and heparin concomitantly. This led to severe bleeding and required immediate intervention. The patient was discontinued on heparin and streptokinase, and restarted on heparin only after 24 hours.

    Another patient had a cutaneous allergic reaction (type A), as shown in [Figure 4], at the site of administration of intravenous heparin. The patient was put on antihistaminic drugs following which the reaction regressed over 4–5 days. This was the only case that required an intervention.
    Figure 4: Cutaneous allergic reaction due to intravenous administration of heparin

    Click here to view



       Discussion Top


    Anticoagulants are the most commonly prescribed drugs in CCU. Strict vigilance is required for patients especially on anticoagulants as these drugs have a narrow therapeutic range. However, very few ADRs get reported to the pharmacovigilance unit. Hence, this study was undertaken as an active surveillance so as to create an awareness among the prescribers. This would also further alert them regarding the risk factors so that preventive measures could be taken thereby reducing the morbidity.

    Our study showed an incidence of 23% of ADRs. Although ADRs have been reported nonfrequently from the CCU, cardiovascular drugs and anticoagulants were the most common drug classes implicated in the studies conducted by Lisha et al.[15] and Tiaden et al.[16] In the 5-year retrospective study conducted by Piazza et al.,[17] anticoagulants again were responsible for majority of ADEs, of which 70% were preventable. As with their study and ours, the highest incidence was seen in the elderly age group with a mean of 62 and 57 years, respectively. Unfractionated heparin was responsible for 58.3% and fondaparinux for 0.7% reactions. Likewise, in this study the incidence of ADRs with unfractionated heparin is 25.86% whereas that with fondaparinux is 11.11%. As with the aforementioned studies, bleeding as a serious adverse event was associated with heparin. Fondaparinux appeared to be better tolerated as the incidence of ADRs associated with it were less compared to that of heparin. Mehta et al.[18] have shown that when compared with a heparin-based strategy, fondaparinux reduces mortality, ischemic events, and major bleeding across the full spectrum of acute coronary syndromes and is associated with a more favorable net clinical outcome in patients undergoing either an invasive or a conservative management strategy. At the same time, its cost has placed it out of reach from the needy patients especially in a large developing nation and health-care centers involved in free patient services such as ours, necessitating the use of heparin. The 2007 heparin contamination crisis resulting in several deaths in the United States and hundreds of adverse reactions worldwide revealed the vulnerability of a complex global supply chain to sophisticated adulteration as shown in study by Szajek et al.[19] This may also have favored the use of fondaparinux over heparin. In the study conducted by Palaniappan et al.,[20] active surveillance yielded 98% reports and only 2% through the spontaneous reporting system. Previously no ADRs were reported from the CCU in our tertiary care hospital. This 3-month study shows that active surveillance is much more effective as 16 (23.88%) ADRs pertaining only to anticoagulants were reported by us.

    ADR monitoring and reporting activity is still in its formative years in India. It is important to define the role of drug, its risk–benefit ratio, contraindications, and precautions with its use. An important reason for inadequate reporting or documenting is the lack of awareness and interest among the health-care professionals. This study was designed not only to report ADRs, but also to increase the level of awareness in the entire team interacting with the patients in the CCU and in other wards.


       Conclusion Top


    The two major reactions highlight the need for nurses and other caretakers in the CCU to enquire for and report ADRs, particularly when the administrations of such high-potency medicines are associated with an equally high potential to induce ADRs. This will definitely result in better care with lesser ADRs and the complications associated with them, such as requirement of interventional medicine, prolonged hospital stay, and increased financial and mental burden on the patient, their family members, and the hospital.

    Acknowledgement

    We thank Dr. G. Prabhakar, Principal, Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, Karnataka, India, for his support. We are much grateful for his encouragement.

    Financial support and sponsorship

    Nil.

    Conflicts of interest

    There are no conflicts of interest.



     
       References Top

    1.
    Tripathi KD. Essentials of medical pharmacology. 7th ed. New Delhi, India: Jaypee Brothers Medical Publishers; 2013. p. 82.  Back to cited text no. 1
        
    2.
    Lihite RJ, Lahkar M. An update on the pharmacovigilance programme of India. Front Pharmacol 2015;10:194.  Back to cited text no. 2
        
    3.
    World Health Organization. WHA16.36 Clinical and pharmacological evaluation of drugs.In: Handbook of resolutions and decisions of the World Health Assembly and Executive Board.10. Geneva, Switzerland: World Health Organization;1973.  Back to cited text no. 3
        
    4.
    Mohebbi N, Shalviri G, Salarifar M, Salamzadeh J, Gholami K. Adverse drug reactions induced by cardiovascular drugs in cardiovascular care unit patients. Pharmacoepidemiol Drug Saf 2010;10:889-94.  Back to cited text no. 4
        
    5.
    Decousus H, Prandoni P, Mismetti P, Bauersachs RM, Boda Z, Brenner B, et al.; CALISTO Study Group. Fondaparinux for the treatment of superficial-vein thrombosis in the legs. N Engl J Med 2010;10:1222-32.  Back to cited text no. 5
        
    6.
    Karthikeyan G, Mehta SR, Eikelboom JW. Fondaparinux in the treatment of acute coronary syndromes: evidence from OASIS 5 and 6. Expert Rev Cardiovasc Ther 2009;10:241-9.  Back to cited text no. 6
        
    7.
    Büller HR, Davidson BL, Decousus H, Gallus A, Gent M, Piovella F, et al.; Matisse Investigators. Subcutaneous fondaparinux versus intravenous unfractionated heparin in the initial treatment of pulmonary embolism. N Engl J Med 2003;10:1695-702.  Back to cited text no. 7
        
    8.
    Sharma S, Mahajan S, Mahajan A, Khajuria V. A rare case of fondaparinux-induced major bleeding in postmenopausal woman prescribed for non-ST segment elevation Ml. J Midlife Health 2013;10:241-3.  Back to cited text no. 8
        
    9.
    Edwards IR, Aronson JK. Adverse drug reactions: definitions, diagnosis, and management. Lancet 2000;10:1255-9.  Back to cited text no. 9
        
    10.
    Naranjo CA, Busto U, Sellers EM, Sandor P, Ruiz I, Roberts EA, et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther 1981;10:239-45.  Back to cited text no. 10
        
    11.
    Hartwig SC, Siegel J, Schneider PJ. Preventability and severity assessment in reporting adverse drug reactions. Am J Hosp Pharm 1992;10:2229-32.  Back to cited text no. 11
        
    12.
    Chan M, Nicklason F, Vial JH. Adverse drug events as a cause of hospital admission in the elderly. Intern Med J 2001;10:199-205.  Back to cited text no. 12
        
    13.
    Schumock GT, Thornton JP. Focusing on the preventability of adverse drug reactions. Hosp Pharm 1992;10:538.  Back to cited text no. 13
        
    14.
    Hartholt KA, van der Velde N, Looman CW, Panneman MJ, van Beeck EF, Patka P, et al. Adverse drug reactions related hospital admissions in persons aged 60 years and over, the Netherlands, 1981-2007: less rapid increase, different drugs. PLoS One 2010;10:e13977.  Back to cited text no. 14
        
    15.
    Lisha J, Annalakshmi V, Maria J, Padmini D. Adverse drug reactions in critical care settings: a systematic review. Curr Drug Saf 2017;10:147-61.  Back to cited text no. 15
        
    16.
    Tiaden JD, Wenzel E, Berthold HK, Müller-Oerlinghausen B. Adverse reactions to anticoagulants and to antiplatelet drugs recorded by the German spontaneous reporting system. Semin Thromb Hemost 2005;10:371-80.  Back to cited text no. 16
        
    17.
    Piazza G, Nguyen TN, Cios D, Labreche M, Hohlfelder B, Fanikos J, et al. Anticoagulation-associated adverse drug events. Am J Med 2011;10:1136-42.  Back to cited text no. 17
        
    18.
    Mehta SR, Boden WE, Eikelboom JW, Flather M, Steg PG, Avezum A, et al.; OASIS 5 and 6 Investigators. Antithrombotic therapy with fondaparinux in relation to interventional management strategy in patients with ST- and non-ST-segment elevation acute coronary syndromes: an individual patient-level combined analysis of the Fifth and Sixth Organization to Assess Strategies in Ischemic Syndromes (OASIS 5 and 6) randomized trials. Circulation 2008;10:2038-46.  Back to cited text no. 18
        
    19.
    Szajek AY, Chess E, Johansen K, Gratzl G, Gray E, Keire D, et al. The US regulatory and pharmacopeia response to the global heparin contamination crisis. Nat Biotechnol 2016;10:625-30.  Back to cited text no. 19
        
    20.
    Palaniappan M, Selvarajan S, George M, Subramaniyan G, Dkhar SA, Pillai AA, et al. Pattern of adverse drug reactions reported with cardiovascular drugs in a tertiary care teaching hospital. J Clin Diagn Res 2015;10:FC01-4.  Back to cited text no. 20
        


        Figures

      [Figure 1], [Figure 2], [Figure 3], [Figure 4]
     
     
        Tables

      [Table 1], [Table 2]



     

    Top
     
     
      Search
     
        Similar in PUBMED
       Search Pubmed for
       Search in Google Scholar for
     Related articles
        Access Statistics
        Email Alert *
        Add to My List *
    * Registration required (free)  

     
      In this article
        Abstract
       Introduction
        Materials and Me...
       Results
       Discussion
       Conclusion
        References
        Article Figures
        Article Tables

     Article Access Statistics
        Viewed354    
        Printed9    
        Emailed0    
        PDF Downloaded40    
        Comments [Add]    

    Recommend this journal