Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 737  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission


ORIGINAL ARTICLE
Year : 2019  |  Volume : 11  |  Issue : 8  |  Page : 562-566

Optimization of secreted recombinant human epidermal growth factor production using pectate lyase B from Escherichia coli BL21(DE3) by central composite design and its production in high cell density culture


1 Department of Pharmaceutic and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Jawa Barat, Indonesia
2 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Jawa Barat, Indonesia
3 Department of Biology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Jawa Barat, Indonesia

Correspondence Address:
Sriwidodo Sriwidodo
M.Si. Apt. JI. Raya Bandung, Sumedang KM.21, Sumedang 45363, Jawa Barat.
Indonesia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jpbs.JPBS_207_19

Rights and Permissions

Context: Human Epidermal Growth Factor (hEGF) is a potential therapeutic protein that has been widely used as a healing agent for various chronic wounds. It induces the proliferation and metabolism of epithelial cells, regenerates skin cells, and validates skin elasticity. In the previous study, recombinant hEGF (rhEGF) had been successfully expressed extracellularly in Escherichia coli (E. coli) BL21 (DE3) using pectate lyase B (PelB) signal peptide. The previous study has shown that the medium concentration and the induction time influenced the production of rhEGF. Aims: Therefore, this study was conducted to optimize the induction time and medium concentration for rhEGF extracellular secretion then followed by scale-up production. Settings and Design: This experiment was carried out using E. coli BL21 (DE3) which contains pD881 plasmid that carries hEGF and PelB gene. Optimization design of induction time and medium concentration were obtained using Central Composite Design (CCD). Methods and Material: The method of study started by the rejuvenation of E. coli culture, extracellular secretion, and optimization in the flask scale then followed by scaled-up production with high-cell density culture in the fermenter. Statistical analysis used: The optimization was carried out using Response Surface Methodology (RSM) and multi regression analysis. Results: This work showed that the multiplication of 1.5-fold medium concentration with induction time 3h after the culture started gave the best result among another condition in this study. Additionally, the rhEGF production in the fermenter scale was identified by SDS-PAGE Tricine and quantified by ELISA, which showed 122.40 μg of the rhEGF per milliliter medium. Conclusions: In respect of the result, we conclude that the optimized condition of extracellular secretion was successfully obtained, and gives higher result before the previous study.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed548    
    Printed22    
    Emailed0    
    PDF Downloaded20    
    Comments [Add]    

Recommend this journal