Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 1591  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission


ORIGINAL ARTICLE
Year : 2019  |  Volume : 11  |  Issue : 8  |  Page : 619-627

Formulation and characterization of α-mangostin in chitosan nanoparticles coated by sodium alginate, sodium silicate, and polyethylene glycol


1 Department of Pharmaceutics, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
2 Department of Pharmaceutics, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia; Department of Pharmacy, Faculty of Sports and Health, Universitas Negeri Gorontalo, Gorontalo, Indonesia
3 Department of Physics, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Sumedang, Indonesia
4 Department of Anatomy, Physiology and Biology Cell, Faculty of Medicine, Padjadjaran University, Sumedang, Indonesia
5 Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
6 Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia

Correspondence Address:
Dr. Nasrul Wathoni
Department of Pharmaceutics, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363.
Indonesia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jpbs.JPBS_206_19

Rights and Permissions

Context: α-mangostin, one of the xanthone derivative compounds isolated from Garcinia mangostana L. peel extract, has an excellent anticancer efficacy. However, α-mangostin has a lack of site specificity, poor cells selectivity, and low aqueous solubility. Polymeric nanoparticles formulation can be used to solve these problems. Aim: Therefore, the main aim of this study was to develop polymeric nanoparticles of α-mangostin-based chitosan (αM-Ch) coated by sodium alginate (αM-Ch/Al), sodium silicate (αM-Ch/Si), and polyethylene glycol 6000 (αM-Ch/PEG). Materials and Methods: Polymeric nanoparticles were prepared by ionic gelation method with the spray pyrolysis technique. Optimized formula was characterized by scanning electron microscopy, particle size, entrapment efficiency, drug loading, Fourier transform infrared, X-ray diffraction (XRD), and differential scanning calorimetry (DSC). Results: αM-Ch/Al, αM-Ch/Si, and αM-Ch/PEG Nanoparticles were successfully prepared with the range of particle size approximately 200–400nm. The XRD patterns and DSC thermograms of αM-Ch/Al showed an amorphous state, whereas αM-Ch/Si and αM-Ch/PEG indicated low crystalline forms. In addition, αM-Ch/Al had the highest entrapment efficiency (98.33% ± 0.06%) compared to αM-Ch/Si (70.46% ± 8.93%), and αM-Ch/PEG (92.24% ± 10.98%). Conclusion: These results suggest that αM-Ch/Al has the potential to enhance the physicochemical properties of α-mangostin for further formulation as an anticancer agent.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed132    
    Printed0    
    Emailed0    
    PDF Downloaded12    
    Comments [Add]    

Recommend this journal