Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 1633  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission


REVIEW ARTICLE
Year : 2020  |  Volume : 12  |  Issue : 5  |  Page : 49-56

Molecular insight into odontogenesis in hyperglycemic environment: A systematic review


1 Department of Oral Pathology, Vivekanandha Dental College for Women, Namakkal, Tamil Nadu, India
2 Department of Oral Pathology, Saveetha Dental College, Chennai, Tamil Nadu, India
3 Department of Oral Pathology, KSR Institute of Dental Science and Research, Namakkal, Tamil Nadu, India
4 Department of Oral and Maxillofacial Surgery, KSR Institute of Dental Science and Research, Namakkal, Tamil Nadu, India

Correspondence Address:
Andamuthu Yamunadevi
Department of Oral Pathology, Vivekanandha Dental College for Women, Elayampalayam, Namakkal 637205, Tamil Nadu
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jpbs.JPBS_159_20

Rights and Permissions

Diabetes mellitus is an endocrinal disorder affecting worldwide and the disease incidence is rising alarmingly high. The effects of diabetes on tooth development are explored by limited studies and their molecular insights are very rarely studied. This systematic review is aimed to provide the best scientific literature source on the molecular insights into odontogenesis in hyperglycemic environment caused by diabetes mellitus or by maternal diabetes on the offspring. The literature search was conducted on the databases, namely PubMed, PubMed Central, Cochrane, and Scopus. The original studies exploring the alterations in the molecular pathways of odontogenesis in diabetes mellitus were selected. Data were extracted, chosen, and evaluated by two independent researchers. At the end of thorough data search, four articles were eligible for the review. Three articles brought out the molecular pathways involved in the offspring of gestational diabetes through animal models. Fourth article was an in vitro study, which treated the stem cells in hyperglycemic environment and drafted the molecular pathway. The altered molecular pathways in dental epithelial stem cells (DESCs), dental papilla cells (DPCs), and stem cells from apical papilla were studied and empowered with statistical analysis. Thus with this systematic review, we conclude that apurinic/apyrimidinic endonuclease1 downregulation causing deoxyribonucleic acid hypermethylation and Oct4, Nanog gene silencing, activation of toll-like receptor-4/nuclear factor kappa B (TLR4/NF-κB) pathway are involved in suppressing cell proliferation and accelerated apoptosis in DESCs in high glucose environment. DPCs are suppressed from odonto differentiation by activation of TLR4 signaling and resulting inhibition of SMAD1/5/9 phosphorylation in diabetic condition. NF-κB pathway activation causes decreased cell proliferation and enhanced differentiation in apical papilla stem cells in hyperglycemia. Further studies targeting various stages of odontogenesis can reveal more molecular insight.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed50    
    Printed0    
    Emailed0    
    PDF Downloaded6    
    Comments [Add]    

Recommend this journal