Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 1254  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission


This article has been cited by
1T-jump pyrolysis and combustion of diisopropyl methylphosphonate
Bing Yuan,Hergen Eilers
Combustion and Flame.2019;199()69
[DOI]
2Enzyme-Based Test Strips for Visual or Photographic Detection and Quantitation of Gaseous Sulfur Mustard
Sarka Bidmanova,Mark-Steven Steiner,Martin Stepan,Kamila Vymazalova,Michael A. Gruber,Axel Duerkop,Jiri Damborsky,Zbynek Prokop,Otto S. Wolfbeis
Analytical Chemistry.2016;88(11)6044
[DOI]
3Silibinin, dexamethasone, and doxycycline as potential therapeutic agents for treating vesicant-inflicted ocular injuries
Neera Tewari-Singh,Anil K. Jain,Swetha Inturi,David A. Ammar,Chapla Agarwal,Puneet Tyagi,Uday B. Kompella,Robert W. Enzenauer,J. Mark Petrash,Rajesh Agarwal
Toxicology and Applied Pharmacology.2012;264(1)23
[DOI]
4Silibinin, dexamethasone, and doxycycline as potential therapeutic agents for treating vesicant-inflicted ocular injuries
Uday Turaga,Vinitkumar Singh,Ronald Kendall,Seshadri Ramkumar
Toxicology and Applied Pharmacology.2016;264(1)149
[DOI]
5A Scheme for Ultrasensitive Detection of Molecules with Vibrational Spectroscopy in Combination with Signal Processing
Yong Tan,Ian Tay,Liang Loy,Ke Aw,Zhi Ong,Sergei Manzhos
Molecules.2019;24(4)776
[DOI]
6A Scheme for Ultrasensitive Detection of Molecules with Vibrational Spectroscopy in Combination with Signal Processing
Brenda A. Wilson,Mengfei Ho
Molecules.2015;24(4)141
[DOI]
7A Scheme for Ultrasensitive Detection of Molecules with Vibrational Spectroscopy in Combination with Signal Processing
Fabiana Arduini,Viviana Scognamiglio,Danila Moscone,Giuseppe Palleschi
Molecules.2016;24(4)115
[DOI]
8The chemical disruption of human metabolism
Stephen J. Genuis,Edmond Kyrillos
Toxicology Mechanisms and Methods.2017;27(7)477
[DOI]
9High-level expression and molecular characterization of a recombinant prolidase from Escherichia coli NovaBlue
Tzu-Fan Wang,Meng-Chun Chi,Kuan-Ling Lai,Min-Guan Lin,Yi-Yu Chen,Huei-Fen Lo,Long-Liu Lin
PeerJ.2018;6(7)e5863
[DOI]
10High-level expression and molecular characterization of a recombinant prolidase from Escherichia coli NovaBlue
Adel Ghorani-Azam,Mahdi Balali-Mood
PeerJ.2015;6(7)63
[DOI]
11Exploration of nanofibrous coated webs for chemical and biological protection
Mukesh Sinha,Biswa Das,Namburi Prasad,Brian Kishore,Kamal Kumar
Zastita materijala.2018;59(2)189
[DOI]
12Mass spectral studies of N-oxides of chemical weapons convention-related aminoethanols by gas chromatography/mass spectrometry after silylation
T Sony,L Sridhar,L Sai Sachin,VVS Lakshmi,S Prabhakar
European Journal of Mass Spectrometry.2018;24(6)442
[DOI]
13Real-time selective detection of 2-chloroethyl ethyl sulfide (2-CEES) using an Al-doped ZnO quantum dot sensor coupled with a packed column for gas chromatography
Jun Ho Lee,Hwaebong Jung,Ran Yoo,Yunji Park,Hyun-sook Lee,Yong-Sahm Choe,Wooyoung Lee
Sensors and Actuators B: Chemical.2019;284(6)444
[DOI]
14Skin decontamination efficacy of potassium ketoxime on rabbits exposed to sulfur mustard
Jing-Hai Sun,Pei-Pei Sun,Wei Zheng,Song Han,Ying Ying,Hong-Yan Liu,Cheng Zhang,Bao-Quan Zhao,Guo-Min Zuo,Hong Lu,Yu-Xu Zhong
Cutaneous and Ocular Toxicology.2015;34(1)1
[DOI]
15Mustard vesicating agent-induced toxicity in the skin tissue and silibinin as a potential countermeasure
Neera Tewari-Singh,Rajesh Agarwal
Annals of the New York Academy of Sciences.2016;1374(1)184
[DOI]
16Phosgene oxime: Injury and associated mechanisms compared to vesicating agents sulfur mustard and lewisite
Dinesh Giri Goswami,Rajesh Agarwal,Neera Tewari-Singh
Toxicology Letters.2018;293(1)112
[DOI]
17Phosgene oxime: Injury and associated mechanisms compared to vesicating agents sulfur mustard and lewisite
Majid Montazer,Tina Harifi
Toxicology Letters.2018;293(1)265
[DOI]
18Adsorption of nerve agent simulants onto vermiculite structure: Experiments and modelling
Daniela Plachá,Petr Kovár,Jakub Vanek,Marcel Mikeska,Katerina Škrlová,Ondrej Dutko,Lenka Rehacková,Jirí Slabotínský
Journal of Hazardous Materials.2019;293(1)121001
[DOI]
19Recent Advances in Electrochemical Sensors for Detecting Weapons of Mass Destruction. A Review
Virendra V. Singh
Electroanalysis.2016;28(5)920
[DOI]
20Oxidative Destruction of Multilayer Diisopropyl Methylphosphonate Films by O(3P) Atomic Oxygen
Rebecca S. Thompson,Grant G. Langlois,S. J. Sibener
The Journal of Physical Chemistry B.2018;122(2)455
[DOI]
21Molecular Identification and Disease Management of Date Palm Sudden Decline Syndrome in the United Arab Emirates
Khawla Alwahshi,Esam Saeed,Arjun Sham,Aisha Alblooshi,Marwa Alblooshi,Khaled El-Tarabily,Synan AbuQamar
International Journal of Molecular Sciences.2019;20(4)923
[DOI]
22Molecular Identification and Disease Management of Date Palm Sudden Decline Syndrome in the United Arab Emirates
Brenda A. Wilson,Mengfei Ho
International Journal of Molecular Sciences.2014;20(4)1
[DOI]
23Dirty war: chemical weapon use and domestic repression
Robert Brathwaite
Defence Studies.2016;16(4)327
[DOI]
24Harnessing Nature’s Diversity: Discovering organophosphate bioscavenger characteristics among low molecular weight proteins
Reed B. Jacob,Kenan C. Michaels,Cathy J. Anderson,James M. Fay,Nikolay V. Dokholyan
Scientific Reports.2016;6(1)327
[DOI]
25Sensitive fluorescence on-off probes for the fast detection of a chemical warfare agent mimic
Muhammad Shar Jhahan Khan,Ya-Wen Wang,Mathias O. Senge,Yu Peng
Journal of Hazardous Materials.2018;342(1)10
[DOI]
26Application of stem cells in tissue engineering for defense medicine
Chinedu Cletus Ude,Azizi Miskon,Ruszymah Bt Hj Idrus,Muhamad Bin Abu Bakar
Military Medical Research.2018;5(1)10
[DOI]
27Exploration of fluorescent organotin compounds of a-amino acid Schiff bases for the detection of organophosphorous chemical warfare agents: quantification of diethylchlorophosphate
Navjot Singh,Keshav Kumar,Neha Srivastav,Raghubir Singh,Varinder Kaur,Jerry P. Jasinski,Ray J. Butcher
New Journal of Chemistry.2018;42(11)8756
[DOI]
28Epidemiological findings of major chemical attacks in the Syrian war are consistent with civilian targeting: a short report
Jose M. Rodriguez-Llanes,Debarati Guha-Sapir,Benjamin-Samuel Schlüter,Madelyn Hsiao-Rei Hicks
Conflict and Health.2018;12(1)8756
[DOI]
29Advances and applications of chemical protective clothing system
M A Rahman Bhuiyan,Lijing Wang,Abu Shaid,Robert A Shanks,Jie Ding
Journal of Industrial Textiles.2019;49(1)97
[DOI]
30Sensing and elimination of the hazardous materials such as Sarin by metal functionalized ?-graphyne surface: A DFT study
Fatemeh Mofidi,Adel Reisi-Vanani
Journal of Molecular Liquids.2019;286(1)110929
[DOI]
31Chemical warfare agent simulants for human volunteer trials of emergency decontamination: A systematic review
Thomas James,Stacey Wyke,Tim Marczylo,Samuel Collins,Tom Gaulton,Kerry Foxall,Richard Amlôt,Raquel Duarte-Davidson
Journal of Applied Toxicology.2018;38(1)113
[DOI]
32Micromotors for “Chemistry-on-the-Fly”
Emil Karshalev,Berta Esteban-Fernández de Ávila,Joseph Wang
Journal of the American Chemical Society.2018;140(11)3810
[DOI]
33Doping effect on the sensing properties of ZnO nanoparticles for detection of 2-chloroethyl ethylsulfide as a mustard simulant
Ran Yoo,Dongmei Lee,Sungmee Cho,Wooyoung Lee
Sensors and Actuators B: Chemical.2018;254(11)1242
[DOI]
34Supramolecular Agent-Simulant Correlations for the Luminescence Based Detection of V-Series Chemical Warfare Agents with Trivalent Lanthanide Complexes
Genevieve H. Dennison,Christian G. Bochet,Christophe Curty,Julien Ducry,David J. Nielsen,Mark R. Sambrook,Andreas Zaugg,Martin R. Johnston
European Journal of Inorganic Chemistry.2016;2016(9)1348
[DOI]
35Iron-montmorillonite clays as active sorbents for the decontamination of hazardous chemical warfare agents
F. Carniato,C. Bisio,C. Evangelisti,R. Psaro,V. Dal Santo,D. Costenaro,L. Marchese,M. Guidotti
Dalton Transactions.2018;47(9)2939
[DOI]
36Desorption of sulphur mustard simulants methyl salicylate and 2-chloroethyl ethyl sulphide from contaminated scalp hair after vapour exposure
Marie Spiandore,Mélanie Souilah-Edib,Anne Piram,Alexandre Lacoste,Denis Josse,Pierre Doumenq
Chemosphere.2018;191(9)721
[DOI]
37Assembly of PDMS/SiO 2 -PTFE and activated carbon fibre as a liquid water–resistant gas sorbent structure
Eun Ji Park,Ho Jong Kim,Sang Wook Han,Jae Hwan Jeong,Il Hee Kim,Hyun Ook Seo,Young Dok Kim
Chemical Engineering Journal.2017;325(9)433
[DOI]
38Rapid analysis of sulfur mustard oxide in plasma using gas chromatography-chemical ionization-mass spectrometry for diagnosis of sulfur mustard exposure
Erica Manandhar,Adam Pay,Livia A. Veress,Brian A. Logue
Journal of Chromatography A.2018;1572(9)106
[DOI]
39Assessment of brain oxygenation imbalance following soman exposure in rats
Kevin Lee,Sara Bohnert,Ying Wu,Cory Vair,John Mikler,G. Campbell Teskey,Jeff F. Dunn
NeuroToxicology.2018;65(9)28
[DOI]
40Mesoporous MgAl2O4 and MgTiO3 nanoparticles modified polyacrylonitrile nanofibres for 2-chloroethyl ethyl sulfide degradation
Arun Karthick Selvam,Gobi Nallathambi
Fibers and Polymers.2015;16(10)2121
[DOI]
41Chemical warfare agents. Classes and targets
Michael Schwenk
Toxicology Letters.2018;293(10)253
[DOI]
42Chemical warfare agents. Classes and targets
Dimitrios A. Giannakoudakis,Teresa J. Bandosz
Toxicology Letters.2018;293(10)1
[DOI]
43Carbon Textiles Modified with Copper-Based Reactive Adsorbents as Efficient Media for Detoxification of Chemical Warfare Agents
Marc Florent,Dimitrios A. Giannakoudakis,Rajiv Wallace,Teresa J. Bandosz
ACS Applied Materials & Interfaces.2017;9(32)26965
[DOI]
44Development of technologies applied to the biodegradation of warfare nerve agents: Theoretical evidence for asymmetric homogeneous catalysis
Ander Francisco Pereira,Alexandre A. de Castro,Flavia Villela Soares,Daniel Henriques Soares Leal,Elaine F.F. da Cunha,Daiana Teixeira Mancini,Teodorico C. Ramalho
Chemico-Biological Interactions.2019;308(32)323
[DOI]
45Analysis of chemical warfare agents by gas chromatography-mass spectrometry: methods for their direct detection and derivatization approaches for the analysis of their degradation products
Carlos A. Valdez,Roald N. Leif,Saphon Hok,Bradley R. Hart
Reviews in Analytical Chemistry.2018;37(1)323
[DOI]
46Slight difference in the isomeric oximes K206 and K203 makes huge difference for the reactivation of organophosphorus-inhibited AChE: Theoretical and experimental aspects
Daniel A. Polisel,Alexandre A. de Castro,Daiana T. Mancini,Elaine F.F. da Cunha,Tanos C.C. França,Teodorico C. Ramalho,Kamil Kuca
Chemico-Biological Interactions.2019;309(1)108671
[DOI]
47Are chemical warfare exercises effective in knowledge retention of hospital personnel?
Raya Madar,Ronen Toledano,Bruria Adini
The American Journal of Emergency Medicine.2017;35(1)188
[DOI]
48Are chemical warfare exercises effective in knowledge retention of hospital personnel?
Denise D. P. Thompson
The American Journal of Emergency Medicine.2018;35(1)1
[DOI]
49Hyperspectral depth-profiling with deep Raman spectroscopy for detecting chemicals in building materials
Youngho Cho,Si Won Song,Jiha Sung,Young-Su Jeong,Chan Ryang Park,Hyung Min Kim
The Analyst.2017;142(19)3613
[DOI]
50Hyperspectral depth-profiling with deep Raman spectroscopy for detecting chemicals in building materials
Harald Striegl
The Analyst.2019;142(19)339
[DOI]
51Fluorescent Discrimination between Traces of Chemical Warfare Agents and Their Mimics
Borja Díaz de Greñu,Daniel Moreno,Tomás Torroba,Alexander Berg,Johan Gunnars,Tobias Nilsson,Rasmus Nyman,Milton Persson,Johannes Pettersson,Ida Eklind,Pär Wästerby
Journal of the American Chemical Society.2014;136(11)4125
[DOI]
52The effects of modern war and military activities on biodiversity and the environment
Michael J. Lawrence,Holly L.J. Stemberger,Aaron J. Zolderdo,Daniel P. Struthers,Steven J. Cooke
Environmental Reviews.2015;23(4)443
[DOI]
53Contributions of tissue-specific pathologies to corneal injuries following exposure to SM vapor
Patrick M. McNutt,Kaylie M. Tuznik,Elliot J. Glotfelty,Marian R. Nelson,Megan E. Lyman,Tracey A. Hamilton
Annals of the New York Academy of Sciences.2016;1374(1)132
[DOI]
54Contributions of tissue-specific pathologies to corneal injuries following exposure to SM vapor
Patrick M. McNutt,Tracey L. Hamilton
Annals of the New York Academy of Sciences.2015;1374(1)535
[DOI]
55Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants
Isabel Sayago,Daniel Matatagui,María Jesús Fernández,José Luis Fontecha,Izabela Jurewicz,Rosa Garriga,Edgar Muñoz
Talanta.2016;148(1)393
[DOI]
56Phosphate Esters, Thiophosphate Esters and Metal Thiophosphates as Lubricant Additives
David Johnson,John Hils
Lubricants.2013;1(4)132
[DOI]
57Defining cutaneous molecular pathobiology of arsenicals using phenylarsine oxide as a prototype
Ritesh K. Srivastava,Changzhao Li,Zhiping Weng,Anupam Agarwal,Craig A. Elmets,Farrukh Afaq,Mohammad Athar
Scientific Reports.2016;6(1)132
[DOI]
58Sensitivity enhancement of flexible gas sensors via conversion of inkjet-printed silver electrodes into porous gold counterparts
Yunnan Fang,Mitra Akbari,Jimmy G. D. Hester,Lauri Sydänheimo,Leena Ukkonen,Manos M. Tentzeris
Scientific Reports.2017;7(1)132
[DOI]
59Nitrogen mustard-induced corneal injury involves the sphingomyelin-ceramide pathway
Georgia Charkoftaki,James V. Jester,David C. Thompson,Vasilis Vasiliou
The Ocular Surface.2018;16(1)154
[DOI]
60Evaluation of the efficacy of a portable LIBS system for detection of CWA on surfaces
D. L’Hermite,E. Vors,T. Vercouter,G. Moutiers
Environmental Science and Pollution Research.2016;23(9)8219
[DOI]
61A whole cell optical bioassay for the detection of chemical warfare mustard agent simulants
Amina Antonacci,Maya D. Lambreva,Fabiana Arduini,Danila Moscone,Giuseppe Palleschi,Viviana Scognamiglio
Sensors and Actuators B: Chemical.2018;257(9)658
[DOI]
62A whole cell optical bioassay for the detection of chemical warfare mustard agent simulants
Simerjit Kaur,Minni Singh,Neelam Verma
Sensors and Actuators B: Chemical.2012;257(9)87
[DOI]
63Analysis of sulfur compounds using a water stationary phase in gas chromatography with flame photometric detection
Kaylan H. McKelvie,Kevin B. Thurbide
Analytical Methods.2017;9(7)1097
[DOI]
64Analysis of sulfur compounds using a water stationary phase in gas chromatography with flame photometric detection
Rosana Buffon
Analytical Methods.2018;9(7)1097
[DOI]
65Efficacy of scalp hair decontamination following exposure to vapours of sulphur mustard simulants 2-chloroethyl ethyl sulphide and methyl salicylate
Marie Spiandore,Anne Piram,Alexandre Lacoste,Philippe Prevost,Pascal Maloni,Franck Torre,Laurence Asia,Denis Josse,Pierre Doumenq
Chemico-Biological Interactions.2017;267(7)74
[DOI]
66Novichoks – The A group of organophosphorus chemical warfare agents
Marcin Kloske,Zygfryd Witkiewicz
Chemosphere.2019;221(7)672
[DOI]
67In vivo protection studies of bis-quaternary 2-(hydroxyimino)-N-(pyridin-3-yl) acetamide derivatives against sarin poisoning in mice
Devyani Swami,Hitendra N Karade,Jyotiranjan Acharya,Pravin Kumar
Human & Experimental Toxicology.2017;36(1)23
[DOI]
68Assessment of exogenous melatonin action on mouse liver cells after exposure to soman
Teodora Król,Wojciech Trybus,Ewa Trybus,Anna Kopacz-Bednarska,Marek Kowalczyk,Marek Brytan,Malgorzata Paluch,Bozena Antkowiak,Marek Saracyn,Grzegorz Król,Magdalena Ciechanowska
Environmental Toxicology and Pharmacology.2018;64(1)147
[DOI]
69Precursors of Nerve Chemical Warfare Agents with Industrial Relevance: Characteristics and Significance for Chemical Security
Javier Quagliano,Zygfryd Witkiewicz,Ewa Sliwka,Slawomir Neffe
ChemistrySelect.2018;3(10)2703
[DOI]
70The stability of Tenax TA thermal desorption tubes in simulated field conditions on the HAPSITE®ER
Sean W. Harshman,Victoria L. Dershem,Maomian Fan,Brandy S. Watts,Grant M. Slusher,Laura E. Flory,Claude C. Grigsby,Darrin K. Ott
International Journal of Environmental Analytical Chemistry.2015;3(10)1
[DOI]
71A Triage Model for Chemical Warfare Casualties
Mohammad Ali Khoshnevis,Yunes Panahi,Mostafa Ghanei,Hojat Borna,Amirhossein Sahebkar,Jafar Aslani
Trauma Monthly.2015;20(3)1
[DOI]
72IRRITANT COMPOUNDS: MILITARY RESPIRATORY IRRITANTS. PART II. STERNUTATORS
Jirí Patocka,Kamil Kuca
Military Medical Science Letters.2016;85(2)50
[DOI]
73A Choline Oxidase Amperometric Bioassay for the Detection of Mustard Agents Based on Screen-Printed Electrodes Modified with Prussian Blue Nanoparticles
Fabiana Arduini,Viviana Scognamiglio,Corrado Covaia,Aziz Amine,Danila Moscone,Giuseppe Palleschi
Sensors.2015;15(2)4353
[DOI]
74Contact-free microparticle characterization via Raman spectroscopy and digital holography
Nava R Subedi,Prakash Adhikari,Matthew J Berg,Gombojav O Ariunbold
Journal of Optics.2018;20(9)095608
[DOI]
75Contact-free microparticle characterization via Raman spectroscopy and digital holography
Effat Behravan,Mitra Asgharian Rezaee
Journal of Optics.2015;20(9)317
[DOI]
76Sample preparation of chemical warfare agent simulants on a digital microfluidic (DMF) device using magnetic bead-based solid-phase extraction
Hyunji Lee,Seyeong Lee,Inae Jang,Jinwoo Kim,Gwangro You,Eunhee Kim,Kihwan Choi,Jae Hwan Lee,Sunkyung Choi,Kwanwoo Shin,Myung-Han Yoon,Han Bin Oh
Microfluidics and Nanofluidics.2017;21(8)317
[DOI]
77Exploring adsorption mechanism of hydrogen cyanide and cyanogen chloride molecules on arsenene nanoribbon from first-principles
R. Bhuvaneswari,V. Nagarajan,R. Chandiramouli
Journal of Molecular Graphics and Modelling.2019;89(8)13
[DOI]
78Quenching Action of Monofunctional Sulfur Mustard on Chlorophyll Fluorescence: Towards an Ultrasensitive Biosensor
Simerjit Kaur,Minni Singh,Swaran Jeet Singh Flora
Applied Biochemistry and Biotechnology.2013;171(6)1405
[DOI]
79Skin permeation of oxides of nitrogen and sulfur from short-term exposure scenarios relevant to hazardous material incidents
Sharyn Gaskin,Linda Heath,Dino Pisaniello,Michael Logan,Christina Baxter
Science of The Total Environment.2019;665(6)937
[DOI]
80Organoiridium(III) Complexes as Luminescence Color Switching Probes for Selective Detection of Nerve Agent Simulant in Solution and Vapor Phase
Sanjoy Kumar Sheet,Bhaskar Sen,Snehadrinarayan Khatua
Inorganic Chemistry.2019;58(6)3635
[DOI]
81Selective Surface Acoustic Wave-Based Organophosphorus Sensor Employing a Host-Guest Self-Assembly Monolayer of ß-Cyclodextrin Derivative
Yong Pan,Ning Mu,Shengyu Shao,Liu Yang,Wen Wang,Xiao Xie,Shitang He
Sensors.2015;15(8)17916
[DOI]
82Efficacy of anti-inflammatory, antibiotic and pleiotropic agents in reversing nitrogen mustard-induced injury in ex vivo cultured rabbit cornea
Dinesh G. Goswami,Rama Kant,Neera Tewari-Singh,Rajesh Agarwal
Toxicology Letters.2018;293(8)127
[DOI]
83Efficacy of anti-inflammatory, antibiotic and pleiotropic agents in reversing nitrogen mustard-induced injury in ex vivo cultured rabbit cornea
U. Turaga,R.J. Kendall,V. Singh,M. Lalagiri,S.S. Ramkumar
Toxicology Letters.2012;293(8)260
[DOI]
84Effectiveness and reaction networks of H2O2vapor with NH3gas for decontamination of the toxic warfare nerve agent, VX on a solid surface
Sam Gon Ryu,Hae Wan Lee
Journal of Environmental Science and Health, Part A.2015;50(14)1417
[DOI]
85Encapsulation of sulfur, oxygen, and nitrogen mustards by cucurbiturils: a DFT study
Natarajan Sathiyamoorthy Venkataramanan,Suvitha Ambigapathy
Journal of Inclusion Phenomena and Macrocyclic Chemistry.2015;83(3-4)387
[DOI]
86DNA damage and repair proteins in cellular response to sulfur mustard in Iranian veterans more than two decades after exposure
Shahriar Khateri,Mahdi Balali-Mood,Peter Blain,Faith Williams,Paul Jowsey,Mohammad Reza Soroush,Effat Behravan,Mahmood Sadeghi
Toxicology Letters.2018;293(3-4)67
[DOI]
87DNA damage and repair proteins in cellular response to sulfur mustard in Iranian veterans more than two decades after exposure
Gabriela S. García-Briones,Miguel Olvera-Sosa,Gabriela Palestino
Toxicology Letters.2019;293(3-4)225
[DOI]
88Mixed CuFe and ZnFe (hydr)oxides as reactive adsorbents of chemical warfare agent surrogates
Marc Florent,Dimitrios A. Giannakoudakis,Rajiv Wallace,Teresa J. Bandosz
Journal of Hazardous Materials.2017;329(3-4)141
[DOI]
89Chemical, biological, radiological, and nuclear threats-Decontamination technologies and recent patents: A review
Abdul Wadood Khan,Sabna Kotta,Shahid Hussain Ansari,Rakesh Kumar Sharma,Vinod Kumar,Sudha Rana,Javed Ali
Journal of Renewable and Sustainable Energy.2012;4(1)012704
[DOI]
90Toxidrome Recognition in Chemical-Weapons Attacks
Dan L. Longo,Gregory R. Ciottone
New England Journal of Medicine.2018;378(17)1611
[DOI]
91Wearable Atmospheric Pressure Plasma Fabrics Produced by Knitting Flexible Wire Electrodes for the Decontamination of Chemical Warfare Agents
Heesoo Jung,Jin Ah Seo,Seungki Choi
Scientific Reports.2017;7(1)1611
[DOI]
92Efficient derivatization of methylphosphonic and aminoethylsulfonic acids related to nerve agents simultaneously in soils using trimethyloxonium tetrafluoroborate for their enhanced, qualitative detection and identification by EI-GC–MS and GC–FPD
Carlos A. Valdez,Mira K. Marchioretto,Roald N. Leif,Saphon Hok
Forensic Science International.2018;288(1)159
[DOI]
93Nitrogen mustard gas molecules and a-arsenene nanosheet interaction studies – A DFT insight
R. Bhuvaneswari,V. Nagarajan,R. Chandiramouli
Journal of Molecular Graphics and Modelling.2019;92(1)65
[DOI]
  Feedback 
  Subscribe 
  Advertise 

Submit articles
Most popular articles
Joiu us as a reviewer
Email alerts
Recommend this journal