Close
  Indian J Med Microbiol
 

Figure 2: Effect of exogenous supplementation of N-acetylcysteine (NAC) along with adsorbed ascites fluid (ad-AF) treatment on the alteration in hepatic total –SH (TSH) contents and hepatic glutathione (GSH) contents among tumor bearers and treated mice. Animals in each groups were transplanted with 1×106 EAT cells i.p. Group I (Tumor Control) was administrated 0.1mL of normal saline, Group II (Tumor Experimental) received 0.1mL of ad-AF, whereas Group III (Tumor Experimental + NAC) was treated with 0.1mL of ad-AF and NAC (0.1mL) intraperitoneally on alternate days right from the day of tumor transplantation (day 0). Animals were sacrificed by cervical dislocation on 18th day post-tumor transplantation. TSH and GSH contents were measured in liver. First group of bars represent the TSH contents, while second group of bars represent GSH contents in liver. Values presented here are mean ± SE of five animals in each group. *P<0.05, **P<0.005

Figure 2: Effect of exogenous supplementation of <i>N</i>-acetylcysteine (NAC) along with adsorbed ascites fluid (ad-AF) treatment on the alteration in hepatic total –SH (TSH) contents and hepatic glutathione (GSH) contents among tumor bearers and treated mice. Animals in each groups were transplanted with 1×10<sup>6</sup> EAT cells <i>i.p.</i> Group I (Tumor Control) was administrated 0.1mL of normal saline, Group II (Tumor Experimental) received 0.1mL of ad-AF, whereas Group III (Tumor Experimental + NAC) was treated with 0.1mL of ad-AF and NAC (0.1mL) intraperitoneally on alternate days right from the day of tumor transplantation (day 0). Animals were sacrificed by cervical dislocation on 18th day post-tumor transplantation. TSH and GSH contents were measured in liver. First group of bars represent the TSH contents, while second group of bars represent GSH contents in liver. Values presented here are mean ± SE of five animals in each group. *<i>P</i><0.05, **<i>P</i><0.005