Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 3962  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission

 Table of Contents  
Year : 2011  |  Volume : 3  |  Issue : 2  |  Page : 242-248  

Antidiabetic activity of medium-polar extract from the leaves of Stevia rebaudiana Bert. (Bertoni) on alloxan-induced diabetic rats

1 School of Studies in Chemistry and Biochemistry, Vikram University, Ujjain - 456 010; Green Technology, Ipca Laboratories Limited, Ratlam - 457 002, Madhya Pradesh, India
2 Department of Pharmacognosy, Mandsaur Institute of Pharmacy, Mandsaur - 458 001, Madhya Pradesh, India
3 Department of Pharmacology, B. R. Nahata College of Pharmacy, Mandsaur - 458 001, Madhya Pradesh, India
4 School of Studies in Chemistry and Biochemistry, Vikram University, Ujjain - 456 010, Madhya Pradesh, India
5 Green Technology, Ipca Laboratories Limited, Ratlam - 457 002, Madhya Pradesh, India

Date of Submission16-Aug-2010
Date of Decision15-Sep-2010
Date of Acceptance01-Nov-2010
Date of Web Publication12-May-2011

Correspondence Address:
B K Mehta
School of Studies in Chemistry and Biochemistry, Vikram University, Ujjain - 456 010, Madhya Pradesh
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0975-7406.80779

Rights and Permissions

Objective: To investigate the medicative effects of medium-polar (benzene:acetone, 1:1, v/v) extract of leaves from Stevia rebaudiana (family Asteraceae) on alloxan-induced diabetic rats. Materials and Methods: Diabetes was induced in adult albino Wistar rats by intraperitoneal (i.p.) injection of alloxan (180 mg/kg). Medium-polar extract was administered orally at daily dose of 200 and 400 mg/kg body wt. basis for 10 days. The control group received normal saline (0.9%) for the same duration. Glibenclamide was used as positive control reference drug against Stevia extract. Results: Medium-polar leaf extract of S. rebaudiana (200 and 400 mg/kg) produced a delayed but significant (P < 0.01) decrease in the blood glucose level, without producing condition of hypoglycemia after treatment, together with lesser loss in the body weight as compared with standard positive control drug glibenclamide. Conclusions: Treatment of diabetes with sulfonylurea drugs (glibenclamide) causes hypoglycemia followed by greater reduction in body weight, which are the most worrisome effects of these drugs. Stevia extract was found to antagonize the necrotic action of alloxan and thus had a re-vitalizing effect on β-cells of pancreas.

Keywords: Alloxan-induced diabetic rats, antidiabetic activity, benzene:acetone extract, Compositae, Stevia rebaudiana

How to cite this article:
Misra H, Soni M, Silawat N, Mehta D, Mehta B K, Jain D C. Antidiabetic activity of medium-polar extract from the leaves of Stevia rebaudiana Bert. (Bertoni) on alloxan-induced diabetic rats. J Pharm Bioall Sci 2011;3:242-8

How to cite this URL:
Misra H, Soni M, Silawat N, Mehta D, Mehta B K, Jain D C. Antidiabetic activity of medium-polar extract from the leaves of Stevia rebaudiana Bert. (Bertoni) on alloxan-induced diabetic rats. J Pharm Bioall Sci [serial online] 2011 [cited 2022 Dec 3];3:242-8. Available from:

As a devastating disease, diabetes is affecting approximately 3% of the population worldwide, 90% of which suffer from type 2 diabetes. [1] The World Health Organization (WHO) estimates that more than 180 million people worldwide have diabetes and this number is likely to more than double by 2030 and an estimated 1.1 million people died from diabetes in 2005. WHO estimates that over the next 10 years (2006-2015), China will lose $ 558 billion in foregone national income due to heart disease, stroke and diabetes alone. [2] India leads the world with the largest number of diabetic subjects, earning the dubious distinction of being termed the "diabetes capital of the world". According to the Diabetes  Atlas More Details 2006 published by the International Diabetes Federation, the number of people with diabetes in India, currently around 40.9 million, is expected to rise to 69.9 million by 2025 unless urgent preventive steps are taken. [3]

Stevia rebaudiana (Bertoni) is one of the 950 genera of the Compositae (Asteraceae). The plant was rediscovered by Dr. Moises Santiago Bertoni in 1887. The plant was used extensively by Gaurani Indians for more than 1500 years. [4] Stevia has a long history of medicinal use in Paraguay and Brazil, and while many of the therapeutic applications of Stevia are anecdotal, they must be considered in that they have spanned generations. There are now known to be more than 150 Stevia species but this is the only one with significant sweetening properties; other species do contain other biochemicals of interest. Leaves contain approximately 4-15% of steviosides, which are intensely sweet compounds (150-300 times sweeter than sugar). The leaves have been traditionally used for hundreds of years in Paraguay and Brazil to sweeten local teas, medicines and as a "sweet treat". [5]

S. rebaudiana possesses various activities like antimicrobial, [6] antifungal, [7] hepatoprotective, [8] hypoglycemic (water extract), [9] antitumor, [6] antirotavirus, [10] anti-HIV, [11] anti-hypertension, [12],[13] antiviral activity, [14] etc. Other folk applications of Stevia and stevioside (primarily in Latin America and the Orient) include the following: stimulate alertness and counter fatigue; facilitate digestion and gastrointestinal functions; regulate blood glucose levels (BGLs); nourish the liver, pancreas and spleen; help the body sustain a feeling of vitality and well-being and external application for blemishes. Some Stevia and stevioside users report a decrease in desire for sweets and fatty foods. Additionally, some users have reported that drinking Stevia tea or Stevia enhanced teas helped to reduce their desire for tobacco and alcoholic beverages. [15] Stevia and stevioside have been shown in studies to inhibit the growth and reproduction of some bacteria that are responsible for tooth decay. [15],[16]

Studies on the comparative effects of leaves and stevioside on glycemia and hepatic gluconeogenesis have already been reported. [17] Hypoglycemic effect [18] of stevioside has also been studied, together with protective effects of stevioside against the toxic actions of alloxan. [19] Chen et al.[18] suggested that stevioside was able to regulate BGLs by enhancing not only insulin secretion, but also insulin utilization in insulin-deficient rats; the latter was due to decreased PEPCK gene expression in rat liver by stevioside's action of slowing down gluconeogenesis. Further studies of this agent for the treatment of diabetes appear warranted. These studies on hypoglycemic actions were centralized on stevioside, a polar molecule, which can be extracted completely either with methanol or with water, [20] whereas non-polar and medium-polar solvents like n-hexane, benzene, methylene dichloride, ethyl acetate acetate and have lesser affinity toward extraction of stevioside. Polar (methanol and water) extracts containing stevioside are well studied for hypoglycemic action, whereas low-polar and medium-polar extracts are yet to be investigated. Therefore, our group decided to study the hypoglycemic effects of medium-polar extractive of its leaves. For this, we generated medium-polar solvent by mixing benzene:acetone in 1:1, v/v ratio. Benzene, being toxic in nature, was selected because it dissolves fatty acids/esters, acetylenes and less to medium-polar plant components. Traces of benzene were removed before the use of extract on animals.

During our investigation of this sweet herb of Paraguay, we carried out extraction of its leaves with benzene:acetone, 1:1, v/v, after defatting the plant material with n-hexane. This medium-polar extract was taken for evaluation of in vivo antidiabetic effects to assess its hypoglycemic (antidiabetic) value.

   Materials and Methods Top

Plant material

Leaves of S. rebaudiana were purchased from Sun Fruits Ltd., Pune (India), which were pulverized manually through hands and filtered with a sieve of mesh size 14. A portion (1.0 kg) of these leaves was kept for extraction. S. rebaudiana was authenticated by Dr. Gyanendra Tiwari (Taxonomist, Department of Fruit Science, K. N. K. College of Horticulture, Mandsaur) and a voucher specimen (MIP/PD/HN/Stevia/S-01) of the plant was deposited in the herbarium of Department of Pharmacognosy, Mandsaur Institute of Pharmacy, Mandsaur (MP), India.

Extract preparation

Dried leaves of S. rebaudiana plant (1.0 kg) were first defatted with several extractions of n-hexane and then these leaves were again extracted using benzene:acetone in the ratio of 1:1, v/v. The medium-polar extract of the leaves thus obtained was distilled and simultaneously dried in vacuo using rotatory evaporator (Bόchi, Switzerland). Benzene was removed completely by distillation, making an azeotropic mixture with alcohol-water. [21] A portion (20 g) of this dried extract was stored under refrigeration at 4.0 ± 2°C until used for biological activity.

Thin-layer chromatographic profiles of Stevia extract

Few chromatographic signatures (plant metabolite profiling) of medium-polar (benzene:acetone) extract of S. rebaudiana were developed using thin-layer chromatography (TLC) coupled with densitometric detection. For this, we optimized three different mobile phases for three different categories of metabolites (non-polar, medium-polar and polar) present in benzene:acetone extract.

Non-polar, medium-polar and polar constituents of the extract were separated onto TLC plates [Figure 1]a-c using hexane:diethyl ether, chloroform:methanol, and chloroform:methanol:water in ratios of 1:1, 85:15, and 60:36:4, (all v/v), respectively. Pure stevioside was used as reference / marker component, which was a kind gift from Dr. Jaroslav Pól (University of Helsinki, Finland).
Figure 1: Non-polar (a), middle-polar (b) and polar (c) metabolite profiles of benzene:acetone extract [In (c), A and B = test benzene:acetone extract; C and D = standard stevioside tracks]

Click here to view

Extraction and determination of the extracted amount of stevioside

One gram sample of dried leaves was packed in an extraction thimble of Whatmann filter paper number 1 and extracted by hot soxhlet extraction over a water bath for 48 h. The extract thus obtained was dried in vacuo and redissolved in 10 mL methanol. Quantitative analysis was performed by spotting 5 μL of this test solution on pre-coated silica gel 60 F 254 TLC plate (Item code: 1.05554.0007; Make: Merck, Darmstadt, Germany) against 5 μL of standard stevioside solution of concentration 1 mg/mL (methanol). TLC was developed in chloroform:methanol:water in a ratio of 60:36:4, v/v/v and allowed to stand in air for evaporation of the solvent completely. Dark green colored spots of well-resolved Stevia glycosides were visualized by heating derivatized plate on Camag TLC plate heater at at 110°C for 10-20 minutes. Post-chromatographic derivatization of TLC plate was performed with freshly prepared anisaldehyde-sulfuric acid reagent. [22] TLC was scanned via CAMAG TLC Scanner 3 in visible mode (tungsten lamp) at 620 nm. A calibration curve was plotted between increasing amounts of standard stevioside per spot and their peak area responses. A straight line was obtained between 1 and 10 μg/spot with a correlation coefficient (r) 0.99907 (r2 = 0.998; sdv = 3.15). The linear regression equation (y = mx + C) was found to be y = 268.2x + 52.07, where y is the peak area, m is slope of calibration curve, x is the concentration and C is the intercept. Stevioside content in benzene:acetone extract was found to be 0.45% dry leaves weight basis [Table 1].
Table 1: Stevioside content in benzene: Acetone extract

Click here to view

Chemicals and reference drugs

Alloxan monohydrate was procured from Loba Chemie, Mumbai, India, and other reagents used in the experiment were of analytical grade. Chemically, alloxan is 2, 4, 4,6-tetra oxo hexahydropyrimidine. Glibenclamide, a reference antidiabetic drug used in this study, was purchased from a local medical store (Aventis Pharma Ltd., Goa, India) and stored as per the instructions given on the pack (i.e., below 25°C).


Adult Wistar strain albino rats (120-140 g; n = 70) of either sex were obtained from B. R. N. C. P., Mandsaur animal house, after getting permission from Institution of Animal Ethics Committee (IAEC). The rats were maintained under standard laboratory conditions at 25 ± 2°C, relative humidity 50 ± 15% and normal photoperiod (12 h dark/12 h light) for the experiment. Standard pellet diet (Hindustan Lever Ltd., Mumbai, India) and water were provided ad libitum. The experimental protocol has been approved by the IAEC and by the Regulatory body of the government (Animal Ethical Committee number 1019/C/06/CPCSEA). Blood was collected by making a small cut at terminal tail vein for measuring BGL. Estimation of blood glucose was done by using Accu-Check Advantage blood glucose system (strip method).

Acute toxicity study

Acute toxicity study of extracts was carried out in albino rats of either sex by "up and down method" (OECD Guidelines 425). Animals were treated with extract (2000 mg/kg) and observed continuously for the first 4 hours for general behavioral, neurological, autonomic profiles and mortality within 24 h. One-fifth and one-tenth of safe dose was selected as the experimental dose. [23]

Evaluation of antidiabetic activity

Induction of diabetes

Hyperglycemia was induced in 18-h fasted adult Wistar rats (n = 50) weighing 120-140 g by a single intraperitoneal (i.p.) injection of freshly prepared alloxan monohydrate (180 mg/kg) [24] dissolved in normal saline; a 20% glucose solution was also injected intraperitoneally after 4-6 h. The rats were then kept for the next 24 h on 5% glucose solution bottles in their cages to prevent hypoglycemia. [25] Fasting BGLs were estimated by commercially available glucose kit based on glucose oxidase method. [26] The elevated glucose level in plasma, determined at 48 h after injection, confirmed hyperglycemia. Rats with blood glucose more than 250 mg/dl were included in the study (n = 31). 1 unit of insulin i.p. was also given to prevent motility (due to triphasic response) after induction of diabetes. [23],[27]

Experimental design

Animals were divided into five groups (five animals in each group). The first group (control/sham) received normal saline (0.9%) and the second group received alloxan monohydrate (180 mg/kg) and served as negative control. Groups from second to fifth were alloxan treated groups (diabetic animals). The third group received antidiabetic reference drug glibenclamide (10 mg/kg) as positive control. The remaining (fourth and fifth) groups received 200 mg/kg (body wt.) and 400 mg/kg (body wt.) of Stevia extract. The blood glucose concentrations of the animals were measured at the beginning of the study and the measurements were repeated on 3 rd , 7 th and 10 th days. [28] All the animals were regularly observed for their general behavior. Changes in the body weight were also measured.

Statistical analysis

All values were expressed as mean ± standard error mean (SEM). The differences were compared using one-way analysis of variance (ANOVA) followed by Dunnet's test. P values <0.01 were considered as significant.

   Results and Discussion Top

Alloxan, a β-cytotoxin, destroys β-cells of  Islets of Langerhans More Details of pancreas, resulting in a decrease in endogenous insulin secretion and paves the way for the decreased utilization of glucose by the tissues. [29],[30],[31] In vitro studies have shown that alloxan is selectively toxic to pancreatic β-cells, leading to the induction of cell necrosis. [32],[33] The cytotoxic action of alloxan is mediated by reactive oxygen species, with a simultaneous massive increase in cystolic calcium concentration, leading to a rapid destruction of β-cells. [34] Decreased utilization of glucose by the tissues results in the elevation of BGL.

Expression of elevated fasting BGL confirms induction of diabetes in alloxan-induced experimental rats. The experiment focused on exploring the competence of medium-polar (benzene:acetone, 1:1, v/v) extract from the leaves of S. rebaudiana for medication of diabetes against positive control reference drug glibenclamide. The difference in the initial and final fasting BGLs of different groups in long-term (10-day) studies exposed a significant elevation in BGL in diabetic controls as compared with that of normal control, extract treated and glibenclamide treated rats. Treatment of BGL with Stevia extract indicates the effectiveness of the extract in experimental diabetic animals.

Medium-polar extract from leaves of S. rebaudiana, when administered orally (200 and 400 mg/kg) for 10 days, produced a significant (P < 0.01) dose-dependent reduction in BGL [Table 2] as well as in the body weight [Table 3], although body weight was regained by rats treated with both glibenclamide and Stevia extract. Stevia extract exhibited a significant control of BGLs in diabetic rats, together with lowest decrease in the body weight, as compared with glibenclamide. Alternative exogenous treatments to diabetes include dosage of insulin and sulfonylurea drugs (e.g., glibenclamide), which cause hypoglycemia followed by greater reduction in body weight are the most worrisome effects. Treatment with Stevia extract did not cause hypoglycemia as well as significant decrease in body weight of diabetic rats. Stevia extract was found to revitalize β-cells of pancreas, antagonizing β-necrotic action of alloxan.
Table 2: Effects of Stevia extract on blood glucose level (mg/dL) of diabetic rats

Click here to view
Table 3: Effects of Stevia extract on body weight of diabetic rats

Click here to view

Excessive hepatic glycogenolysis and gluconeogenesis associated with decreased utilization of glucose by tissue is the fundamental mechanism underlying hyperglycemia in the diabetic state. [35] Aberration of liver glycogen synthesis or glycogenolysis in diabetes may be due to lack of or resistance to insulin, which is essential to activate glycogen synthase system. The significant increase of liver glycogen level in Stevia extract-treated groups may be due to reactivation of the glycogen synthase system by improving insulin secretion. Diabetes is associated with weight loss. [36] The reversal of weight loss in extract-treated diabetic group indicates that the restorative effect of the extract may be due to the reversal of gluconeogenesis and glycogenolysis.

Experimental results also reflect that the Stevia extract is capable of reducing the oxidative state associated with diabetes. Alloxan produces diabetes by liberating oxygen-free radicals which cause lipid peroxide-mediated pancreatic injury. [37] The extract may scavenge free radicals and facilitate reconstruction of pancreatic cells to release more insulin and ultimately produces an antidiabetic effect.

Effects on blood glucose level

Administration of benzene:acetone extract (200 and 400 mg/kg) produced a significant (P < 0.01) dose-dependant reduction in BGL of alloxan-induced diabetic rats. Alloxanized rats of group II (negative control) suffered from hyperglycemia as they did not receive any drug, whereas alloxanized rats of group III (positive control) treated with the reference antidiabetic drug glibenclamide showed significant reduction in BGL to the required standard blood glucose level on the 7 th day and the levels were continuously maintained up to 10 th day. Rats of group IV treated with Stevia extract (200 mg/kg) showed nearly normal BGL (99.00 ± 7.98 mg/dL) value on the 10 th day, whereas group V rats treated with Stevia extract (400 mg/kg) also showed decrease in blood glucose level to nearly normal (93.69 ± 9.33 mg/dL) value, which is very close to 0 day BGL of group V. [Table 2] shows that positive control glibenclamide treated rats attained normalized BGL on the 7 th day of treatment, whereas Stevia extract treated rats attained nearby normal BGL on the 10 th day.

Effects on body weight

Administration of benzene:acetone extract of Stevia (200 and 400 mg/kg) produced a significant (P < 0.01) dose-dependent reduction in body weight of alloxan-induced diabetic rats. Group II (alloxan-induced negative control) rats revealed 4.46, 32.41 and 36.32% decrease in the body weight on 3 rd , 7 th and 10 th days, respectively, with respect to 0 day control value. Group III (positive control with glibenclamide) rats revealed 5.50, 8.21 and 6.71% decrease in the body weights monitored on 3 rd , 7 th and 10 th days of treatment, respectively. Rats in group IV treated with Stevia extract (200 mg/kg) revealed 10.81, 4.27 and 2.20% decrease in the body weight, while group V (400 mg/kg) rats revealed 16.87, 6.85 and 2.59% decrease in body weight on 3 rd , 7 th and 10 th days, respectively, as compared with 0 day value. Least decrease in body weight was observed in group IV rats (200 mg/kg), i.e., 2.20% on the 10 th day [Table 3].

Glibenclamide versus Stevia extract treatment

The effects of oral administration of medium-polar (benzene:acetone, 1:1, v/v) extract of S. rebaudiana leaves are shown in [Table 2] and [Table 3]. Experimental studies clearly reveal that the medium-polar extract from S. rebaudiana leaves (200 and 400 mg/kg) orally administered for 10 days produced a delayed but significant decrease in the blood glucose level, together with lesser loss in the body weight, as compared with standard positive control drug in the model of alloxan-induced diabetes in rats.

Effects on liver, renal and pancreatic weights

[Table 4] shows the effect of medium-polar extract of S. rebaudiana on renal, pancreatic and hepatic weights of normal, diabetic and diabetic treated rats. A significant intergroup difference (P < 0.05) was observed in glibenclamide treated group and diabetic control group. The liver weight of the normal rats was greater as compared to that of the diabetic control rats and treated diabetic rats. As shown in [Table 4], administration of alloxan decreased the liver mass to 1.15 ± 0.2 g/100 g body weight, which showed significant difference (P < 0.01) with respect to non-diabetic rats. The liver mass was increased in diabetic treatment groups and glibenclamide treatment groups significantly (P < 0.05) with respect to diabetic control groups. Alloxan administration also caused a decrease in the pancreatic tissue weight. Treatment with the extract caused a significant increase in pancreatic tissue weight (P < 0.05) with respect to diabetic control. S. rebaudiana extract reduced the elevated kidney weight slightly as compared to untreated diabetic rats, although this did not reach statistically significant level.
Table 4: Effect on liver, pancreatic and kidney weights in diabetic rats

Click here to view

Long-term pretreatment with sulfonylurea glyburide (GB) causes elevated basal insulin secretion (BIS) and decreased glucose-stimulated insulin secretion (GSIS). These characteristics may play an important role in the development of hypoglycemia and secondary failure. Results revealed that stevioside was able to counteract the desensitizing effects of GB and may be a putative new drug candidate for the treatment of type 2 diabetes mellitus. [38] Abudula et al. in 2004 [39] showed that rebaudioside A potentially stimulates insulin secretion from isolated mouse islets in a dose-, glucose- and Ca 2+ -dependent manner. According to the study of Dyrskog et al., [40] rebaudioside A failed to show beneficial effects in diabetic animals. In continuation of the previous study, Abudula et al. in 2008 [41] reported the mechanism for the insulinotropic action of rebaudioside A.

According to the study of Gardana et al.[42] on the metabolism of stevioside and rebaudioside A from S. rebaudiana extracts by human microflora, both stevioside and rebaudioside A were completely hydrolyzed to their aglycon steviol in 10 and 24 h, respectively. Interestingly, the human intestinal microflora was not able to degrade steviol, which suggests that stevia glycosides are zero calorie sweeteners and thus can be utilizable as a dietary supplement by diabetic patients or these sweeteners can also be used for preparing cough syrups.

Stevioside is not absorbed by the human gut; only bacteria of the colon degrade stevioside to steviol. Part of this steviol is absorbed by the colon and transported to the liver by portal blood. In the liver, steviol glucuronide is formed, which is released into the blood and filtered out by the kidneys into the urine. High levels of steviol glucuronide in the urine suggest that there is no accumulation of steviol derivatives in the human body. The steviol glucuronide still present is expected to be excreted in the urine during the next 24 h. Besides steviol glucuronide, no free steviol or any other possible steviol metabolite could be detected in blood or urine. Hepatic metabolism of steviol is extremely low, if existing at all, which is in agreement with the results of Koyama et al., [43],[44] who demonstrated by their in vitro experiments that the steviol metabolism by human microsomes was 4 times lower than that by rat microsomes, and the latter one was already very low. [44]

A recent in vivo study by Melis et al., in 2009, [45] carried out on 30 male rats, toward evaluation of the renal excretion of steviol suggested that steviol at all doses (0.5, 1.0 and 3.0 mg/kg/h) used, except the lowest (0.5 mg/kg/h), induced a statistically significant increase in glucose clearance when compared to control and exhibited a dose-dependent effect. In our medium-polar extract, the amount of stevioside was 0.45% (dry leaves weight basis) as determined by high-performance thin-layer chromatography (HPTLC) method. Thus, the antidiabetic (hypoglycemic) effects of this extract may be due to the presence of stevioside, rebaudioside A and other sweet glycosides, as was also shown in polar chromatographic signature/profile [Figure 1]c of benzene:acetone extract.

   Conclusions Top

In conclusion, the present data suggest that Stevia extract produced good antidiabetic effects together with lesser loss in body weight. Thus, purified Stevia sweeteners can also be used in the preparation of cough syrups and cold beverages for diabetes patients.

   Acknowledgments Top

The authors would like to thank Dr. V. B. Gupta, Director, B. R. Nahata Group of Institutions and Research centre, for in vivo evaluation of antidiabetic activity. Authors are grateful to Dr. Jaroslav Pól (University of Helsinki, Finland) for providing gift sample of stevioside reference standard and to Ms. Barbora Hohnova for shipment of the same to our place. Authors are also very thankful to Mr. Deepak Jain and Mr. Ashish Bharillya for the purchase arrangement of S. rebaudiana leaves from M/s. Sun Fruits Limited, India.

   References Top

1.Skyler JS. Diabetes mellitus: Pathogenesis and treatment strategies. J Med Chem 2004;47:4113-7.  Back to cited text no. 1
2.World Health Organization. Geneva: WHO; 2008. Diabetes, Fact sheet no. 312. Available from: [Last cited on 2010 May 23].  Back to cited text no. 2
3.Mohan V, Sandeep R, Deepa R, Shah B, Varghese C. Epidemiology of type 2 diabetes: Indian scenario. Indian J Med Res 2007;125:217-30.  Back to cited text no. 3
4.Mowrey DB. Life with stevia: how sweet it is! Available from: [Last accessed on 2010 Oct 20].  Back to cited text no. 4
5.Midmore DJ, Rank AH. A new rural industry - Stevia - to replace imported chemical sweeteners 2002. A report for the rural industries research and development corporation Australia: RIRDC web. Publication no. W02/022, RIRDC, Project no. UCQ-16A; 2002. Available from: [Last accessed on 2010 Jan 02].   Back to cited text no. 5
6.Satishkumar J, Sarvanan MM, Seethalakshmi I. In-vitro antimicrobial and antitumor activities of Stevia rebaudiana (Asteraceae) leaf extracts. Trop J Pharm Res 2008;7:1143-9.   Back to cited text no. 6
7.Silva PA, Oliveira DF, Prado NR, Carvalho DA, Carvalho GA. Evaluation of the antifungal activity by plant extracts against Colletotrichum gloeosporioides PENZ. Ciência e Agrotecnologia 2008;32:420-8.  Back to cited text no. 7
8.Mohan K, Robert J. Hepatoprotective effects of Stevia rebaudiana Bertoni leaf extract in CCl 4 -induced liver injury in albino rats. Med Arom Plant Sci Biotechnol 2009;3:59-61.   Back to cited text no. 8
9.Oviedo CA, Fronciani G, Moreno R, Maas L. Hypoglycemic action of Stevia rebaudiana. Excerpta Med 1970;209:92-6.  Back to cited text no. 9
10.Takahashi K, Matsuda M, Ohashi K, Taniquchi K, Nakaqomi O, Abe Y, et al. Analysis of anti-rotavirus activity of extract from Stevia rebaudiana. Antiviral Res 2001;49:15-24.   Back to cited text no. 10
11.Takahashi K, Iwata Y, Mori S, Shigeta S. In-vitro anti-HIV activity of extract from Stevia rebaudiana. Antiviral Res 1998;37:A59.  Back to cited text no. 11
12.Chan P, Xu DY, Liu JC, Chen YJ, Tomlinson B, Huang WP, et al. The effect of stevioside on blood pressure and plasma catecholamines in spontaneously hypertensive rats. Life Sci 1998;63:1679-84.   Back to cited text no. 12
13.Lee CN, Wong KL, Liu JC, Chen YJ, Cheng JT, Chan P. Inhibitory effect of stevioside on calcium influx to produce anti-hypertension. Planta Med 2001;67:796-9.  Back to cited text no. 13
14.Kedik SA, Yartsev EI, Stanishevskaya IE. Antiviral activity of dried extract of Stevia. Pharm Chem J 2009;43:198-9.   Back to cited text no. 14
15.Stevia rebaudiana Bertoni. Available from: [Last accessed on 2010 Oct 04].  Back to cited text no. 15
16.Sharma V, Chattopadya (assisted by) Stevia: prospects as an emerging natural sweetener. Available from: [Last accessed on 2007].  Back to cited text no. 16
17.Ferreira EB, de Assis Rocha Neves F, da Costa MA, do Prado WA, de Araújo Funari Ferri L, Bazotte RB. Comparative effects of Stevia rebaudiana leaves and stevioside on glycaemia and hepatic gluconeogenesis. Planta Med 2006;72:691-6.  Back to cited text no. 17
18.Chen TH, Chen SC, Chan P, Chu YL, Yang HY, Cheng JT Mechanism of the hypoglycemic effect of stevioside, a glycoside of Stevia rebaudiana. Planta Med 2005;71:108-13.  Back to cited text no. 18
19.Raskovic A, Gavrilovic M, Jakovljevic V, Sabo J. Glucose concentration in the blood of intact and alloxan-treated mice after pretreatment with commercial preparations of Stevia rebaudiana (Bertoni). Eur J Drug Metab Pharmacokinet 2004;29:87-90.  Back to cited text no. 19
20.Pól J, Varadová Ostrá E, Karásek P, Roth M, Benešová K, Kotlaríková P, et al. Comparison of two different solvents employed for pressurised fluid extraction of stevioside from Stevia rebaudiana: methanol versus water. Anal Bioanal Chem 2007;388:1847-57.   Back to cited text no. 20
21.Azeotropic mixtures Available from; [Last updated on 2009 Feb 21]. Canada: StasoSphere Base c2007-2009. Available from: [Last cited on 2010 May 21].   Back to cited text no. 21
22.Misra H, Dwivedi BK, Mehta D, Mehta BK, Jain DC. Development and validation of high-performance thin-layer chromatographic method for determination of á-mangostin in fruit pericarp of mangosteen plant (Garcinia mangostana L.) using ultraviolet - visible detection. Rec Nat Prod 2009;3:178-86.  Back to cited text no. 22
23.Nagappa AN, Thakurdesai PA, Venkat Rao N, Singh J. Antidiabetic activity of Terminalia catappa Linn. fruits. J Ethnopharmacol 2003;88:45-50.  Back to cited text no. 23
24.Patel N, Raval S, Goriya H, Jhala M, Joshi B. Evaluation of Antidiabetic Activity of Coldenia procumbens in Alloxan-Induced Diabetes in Rat. J Herb Pharmacother 2007;7:13-23.   Back to cited text no. 24
25.Barry JA, Hassan IA, Al-Hakiem MH. Hypoglycaemic and antihyperglycaemic effects of Trigonella foenum-graecum leaf in normal and alloxan induced diabetic rats. J Ethnopharmacol 1997;58:149-55.  Back to cited text no. 25
26.Trinder P. Determination of blood glucose using an oxidase peroxidase system with a noncarcinogenic chromogen. J Clin Pathol 1969;22:158-61.  Back to cited text no. 26
27.Roy S, Sehgal R, Padhy BM, Kumar VL. Antioxidant and protective effect of latex of Calotropis procera against alloxan-induced diabetes in rats. J Ethnopharmacol 2005;102:470-3.  Back to cited text no. 27
28.Aslan M, Orhan DD, Orhan N, Sezik E, Yesilada E. In-vivo antidiabetic and antioxidant potential of Helichrysum plicatum spp. in streptozotocin induced diabetic rats. J Ethanopharmacol 2006;109:54-9.  Back to cited text no. 28
29.Lenzen S, Panten U. Alloxan: History and mechanism of action. Diabetologia 1988;31:337-42.  Back to cited text no. 29
30.Oberley LW. Free radicals and diabetes. Free Radic Biol Med 1988;5:113-24.  Back to cited text no. 30
31.Yamamoto H, Uchigata Y, Okamoto H. Streptozotocin and Alloxan induce DNA strand breaks and poly (ADP-ribose) synthetase in pancreatic islets. Nature 1981;294:284-6.  Back to cited text no. 31
32.Jorns A, Munday R, Tiedge M, Lenzen S. Comparative toxicity of alloxan, N-alkyl-alloxans and ninhydrin to isolated pancreatic islets in-vitro. J Endocrinol 1997;155:283-93.  Back to cited text no. 32
33.LeDoux SP, Woodley SE, Patton NJ, Wilson GL. Mechanism of notrosourea-induced â-cells damage - alterations in DNA. Diabetes 1986;35:866-72.  Back to cited text no. 33
34.Szkudelski T. The mechanism of alloxan and streptozotocin action in B-cells of the rat pancreas. Physiol Res 2001;50:537-46.  Back to cited text no. 34
35.Swanston-Flatt SK, Day C, Bailey CJ, Flatt PR. Traditional plant treatments for diabetes: Studies in normal and streptozotocin diabetic mice. Diabetologia 1990;33:462-4.  Back to cited text no. 35
36.Huang X, Vaag A, Hanson M, Weng J, Laurila E, Groop L. Impaired insulin stimulated expression of the glycogen synthase gene in sekeletal muscle of type 2 diabetic patient is acquired rather than inherited. J Clin Endocrinol Metab 2000;85:1584-90.  Back to cited text no. 36
37.Halliwell B, Gutterdge JM. Free radicals in biology and medicine. London: Oxford Claredon Press; 1985. p. 24-86.  Back to cited text no. 37
38.Chen J, Jeppesen PB, Nordentoft I, Hermansen K. Stevioside counteracts the glyburide-induced desensitization of the pancreatic beta-cell function in mice: studies in-vitro. Metabolism 2006;55:1674-80.   Back to cited text no. 38
39.Abudula R, Jeppesen PB, Rolfsen SE, Xiao J, Hermansen K. Rebaudioside A potentially stimulates insulin secretion from isolated mouse islets: Studies on the dose-, glucose-, and calcium-dependency. Metabolism 2004;53:1378-81.  Back to cited text no. 39
40.Dyrskog SE, Jeppesen PB, Chen J, Christensen LP, Hermansen K. The diterpene glycoside, Rebaudioside A, does not improve glycemic control or affect blood pressure after eight weeks treatment in the Goto-Kakizaki rats. Rev Diabet Stud 2005;2:84-91.  Back to cited text no. 40
41.Abudula R, Matchkov VV, Jeppesen PB, Nilsson H, Aalkjaer C, Hermansen K. Rebaudioside A directly stimulates insulin secretion from pancreatic beta cells: A glucose-dependent action via inhibition of ATP-sensitive K + -channels. Diabetes Obes Metab 2008;10:1074-85.  Back to cited text no. 41
42.Gardana C, Simonetti P, Canzi E, Zanchi R, Pietta P. Metabolism of stevioside and rebaudioside A from Stevia rebaudiana extracts by human microflora. J Agric Food Chem 2003;51:6618-22.  Back to cited text no. 42
43.Geuns JM. Steviol glycosides as food additive, Summary of new applications by eustas Maladeta, no. 20, 22300 Barbastro, Huesca, Spain: European Stevia Association; 2007. Available from: [Last assessed on 2009 Nov 18].  Back to cited text no. 43
44.Koyama E, Sakai N, Ohori Y, Kitazawa K, Izawa O, Kakegawa K, et al. Absorption and metabolism of glycosidic sweeteners of stevia mixture and their aglycone, steviol, in rats and humans. Food Chem Toxicol 2003;41:875-83.  Back to cited text no. 44
45.Melis MS, Rocha ST, Augusto A. Steviol effect, a glycoside of Stevia rebaudiana, on glucose clearances in rats. Braz J Biol 2009;69:371-4.  Back to cited text no. 45


  [Figure 1]

  [Table 1], [Table 2], [Table 3], [Table 4]

This article has been cited by
1 Effect of stevia leaves ( Stevia rebaudiana Bertoni) on diabetes: A systematic review and meta-analysis of preclinical studies
Akibul Islam Chowdhury, Mohammad Rahanur Alam, M Maruf Raihan, Tanjina Rahman, Saiful Islam, Oumma Halima
Food Science & Nutrition. 2022;
[Pubmed] | [DOI]
2 Modulating effects of steviol and steviol glycosides on adipogenesis, lipogenesis, glucose uptake and insulin resistance in 3T3-L1 adipocyte model
Jakub Michal Kurek, Joanna Zielinska-Wasielica, Katarzyna Kowalska, Zbigniew Krejpcio, Anna Olejnik
Journal of Functional Foods. 2022; 94: 105141
[Pubmed] | [DOI]
3 Aqueous extract of Stevia rebaudiana (Bertoni) Bertoni abrogates death-related signaling pathways via boosting the expression profile of oxidative defense systems
Leila Oudbor, Zohreh Mokhtari, Sanaz Dastghaib, Pooneh Mokarram, Huda Fatima Rajani, Mahdi Barazesh, Siamak Salami
Journal of Food Biochemistry. 2022;
[Pubmed] | [DOI]
4 Review on phytochemicals and biological activities of natural sweeteners Stevia rebaudiana Bertoni
International Journal of Secondary Metabolite. 2022; 9(4): 415
[Pubmed] | [DOI]
5 Characteristics and Anti-Diabetics Activity of Jelly Drink Okra Mucus (Abelmoschus Escullentus L.)
Jariyah, E M N Arofah, U Sarofa
Journal of Physics: Conference Series. 2021; 1899(1): 012023
[Pubmed] | [DOI]
6 Effect of stevia and pectin supplementation on physicochemical properties, preservation and in-vivo hypoglycemic potential of orange nectar
Ikram Nabi, Ismaïn Megateli, Yacine Nait Bachir, Salim Djellouli, Amel Hadj-Ziane-Zafour
Journal of Food Processing and Preservation. 2021; 45(2)
[Pubmed] | [DOI]
7 Effect of rearing temperature on physiological measures and antioxidant status of broiler chickens fed stevia (Stevia rebaudiana B.) leaf meal and exogenous xylanase
Vasil Pirgozliev, Isobel Margaret Whiting, Stephen Charles Mansbridge, Stanimir Enchev, Stephen Paul Rose, Kristina Kljak, Amy Elizabeth Johnson, Falko Drijfhout, Sylwia Orczewska-Dudek, Atanas Georgiev Atanasov
Current Research in Biotechnology. 2021; 3: 173
[Pubmed] | [DOI]
8 Effect of stevia aqueous extract on the antidiabetic activity of saxagliptin in diabetic rats
Raafat A. Abdel-Aal, Mahran S. Abdel-Rahman, Soad Al Bayoumi, Laila A. Ali
Journal of Ethnopharmacology. 2021; 265: 113188
[Pubmed] | [DOI]
9 Protective effects of Stevia rebaudiana extracts on beta cells in lipotoxic conditions
Marco Bugliani, Silvia Tavarini, Francesca Grano, Silvia Tondi, Serena Lacerenza, Laura Giusti, Maurizio Ronci, Anna Maidecchi, Piero Marchetti, Marta Tesi, Luciana G. Angelini
Acta Diabetologica. 2021;
[Pubmed] | [DOI]
10 Effective synthesis of Rebaudioside A by whole-cell biocatalyst Pichia pastoris
Meiqi Chen, Xin Zeng, Qingjuan Zhu, Denggang Wang, Shuangyan Han, Shuli Liang, Ying Lin
Biochemical Engineering Journal. 2021; 175: 108117
[Pubmed] | [DOI]
11 ‘Sweeter’ than its name: anti-inflammatory activities of Stevia rebaudiana
Xiaomin Zou, QiWen Tan, Bey-Hing Goh, Learn-Han Lee, Kai-Leng Tan, Hooi-Leng Ser
All Life. 2020; 13(1): 286
[Pubmed] | [DOI]
12 The complete genome sequence of Stevia rebaudiana, the Sweetleaf
Kathleen O'Neill, Stacy Pirro
F1000Research. 2020; 9: 751
[Pubmed] | [DOI]
13 Prophylactic effect of aquatic extract of stevia on acetic acid induced-ulcerative colitis in male rats: a possible role of Nrf2 and PPAR?
Abeer F. Mostafa, Mahmoud M. Elalfy, Ahmed Shata, Mona G. Elhadidy
Journal of Basic and Clinical Physiology and Pharmacology. 2020; 0(0)
[Pubmed] | [DOI]
14 Stevia as a Natural Sweetener: A Review
Balakrishnan Arumugam, Arunambiga Subramaniam, Praveena Alagaraj
Cardiovascular & Hematological Agents in Medicinal Chemistry. 2020; 18(2): 94
[Pubmed] | [DOI]
15 The Potential Efficacy of Stevia Extract, Glimepiride and Their Combination in Treating Diabetic Rats: A Novel Strategy in Therapy of Type 2 Diabetes Mellitus
Abdel-Azim Assi, Doaa H. Abd El-hamid, Mahran S. Abdel-Rahman, Esraa E. Ashry, Soad AI Bayoumi, Asmaa M. Ahmed
Egyptian Journal of Basic and Clinical Pharmacology. 2020; 10
[Pubmed] | [DOI]
16 Insight into anti-diabetic effect of low dose of stevioside
Vladimirka Ilic,Saša Vukmirovic,Nebojša Stilinovic,Ivan Capo,Milan Arsenovic,Boris Milijaševic
Biomedicine & Pharmacotherapy. 2017; 90: 216
[Pubmed] | [DOI]
17 Stereological study of kidney in streptozotocin-induced diabetic mice treated with ethanolic extract of Stevia rebaudiana (bitter fraction)
Lida Hagh-Nazari,Nader Goodarzi,Mohammad Mahdi Zangeneh,Akram Zangeneh,Reza Tahvilian,Rohallah Moradi
Comparative Clinical Pathology. 2017;
[Pubmed] | [DOI]
18 Microbial production of next-generation stevia sweeteners
Kim Olsson,Simon Carlsen,Angelika Semmler,Ernesto Simón,Michael Dalgaard Mikkelsen,Birger Lindberg Møller
Microbial Cell Factories. 2016; 15(1)
[Pubmed] | [DOI]
19 Stevia rebaudiana loaded titanium oxide nanomaterials as an antidiabetic agent in rats
Ariadna Langle,Marco Antonio González-Coronel,Genaro Carmona-Gutiérrez,José Albino Moreno-Rodríguez,Berenice Venegas,Guadalupe Muñoz,Samuel Treviño,Alfonso Díaz
Revista Brasileira de Farmacognosia. 2015; 25(2): 145
[Pubmed] | [DOI]
20 The carcinogenic effects of aspartame: The urgent need for regulatory re-evaluation
Morando Soffritti,Michela Padovani,Eva Tibaldi,Laura Falcioni,Fabiana Manservisi,Fiorella Belpoggi
American Journal of Industrial Medicine. 2014; : n/a
[Pubmed] | [DOI]
21 Influence of Steviol Glycosides on the Stability of Vitamin C and Anthocyanins
Lukasz Wozniak,Krystian Marszalek,Sylwia Skapska
Journal of Agricultural and Food Chemistry. 2014; 62(46): 11264
[Pubmed] | [DOI]
22 Effects of shade regimes and planting geometry on growth, yield and quality of the natural sweetener plant stevia (Stevia rebaudianaBertoni) in north-western Himalaya
Rakesh Kumar,Saurabh Sharma,Kulasekaran Ramesh,Bikram Singh
Archives of Agronomy and Soil Science. 2013; 59(7): 963
[Pubmed] | [DOI]
23 Stevia rebaudianaBertoni. Un potencial adyuvante en el tratamiento de la diabetes mellitus
Irma Aranda-González,Maira Segura-Campos,Yolanda Moguel-Ordoñez,David Betancur-Ancona
CyTA - Journal of Food. 2013; : 1
[Pubmed] | [DOI]
24 Effects of shade regimes and planting geometry on growth, yield and quality of the natural sweetener plant stevia (Stevia rebaudiana Bertoni) in north-western Himalaya
Kumar, R. and Sharma, S. and Ramesh, K. and Singh, B.
Archives of Agronomy and Soil Science. 2013; 59(7): 963-979
25 Ethnomedicinal plants of folk medicinal practitioners in four villages of natore and rajshahi districts, bangladesh
Mawla, F. and Khatoon, S. and Rehana, F. and Jahan, S. and Md. Shelley, M.R. and Hossain, S. and Haq, W.M. and Rahman, S. and Debnath, K. and Rahmatullah, M.
American-Eurasian Journal of Sustainable Agriculture. 2012; 6(4): 406-416


    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

  In this article
    Materials and Me...
    Results and Disc...
    Article Figures
    Article Tables

 Article Access Statistics
    PDF Downloaded372    
    Comments [Add]    
    Cited by others 25    

Recommend this journal