Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 2600  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission

Year : 2011  |  Volume : 3  |  Issue : 2  |  Page : 266-276

Artificial semi-rigid tissue sensitized with natural pigments: Effect of photon radiations

1 Department of Physics, Bio-Medical Physics Laboratory, Jordan University of Science and Technology (JUST), P.O. Box 3030, Irbid 22110, Jordan
2 Department of General and Pediatric Surgery, Faculty of Medicine, Jordan University of Science and Technology (JUST), P.O. Box 3030, Irbid 22110, Jordan, Jordan
3 Department Physics, Yarmouk University, Faculty of Pharmacy, Jordan
4 Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan

Correspondence Address:
M-Ali H Al-Akhras
Department of Physics, Bio-Medical Physics Laboratory, Jordan University of Science and Technology (JUST), P.O. Box 3030, Irbid 22110
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0975-7406.80781

Rights and Permissions

Background: A new approach for evaluating the optical penetration depth and testing its validity with Monte Carlo simulations and Kubelka-Munk theory is used for artificial semi-rigid tissue sensitized with natural pigments. Photodynamic therapy is a promising cancer treatment in which a photosensitizing drug concentrates in malignant cells and is activated by visible light at certain wavelength. Materials and Methods: Cheap artificial semi-rigid tissue incorporated with scattering and absorbing materials along with some other composites comparable to normal human tissue has been performed. The optical parameters as measured with different conditions and calculated with various techniques are investigated. Results: The probability of interaction of light with tissue is very high when exposed to light in presence of Cichorium pumilum and RBCs followed by photohemolysis or/and photodegradation. The optical penetration depth calculated by linear absorption coefficient ranges from 0.63 to 2.85 mm is found to be comparable to those calculated using Kubelka-Munk theory or Monte Carlo simulation (range from 0.78 to 2.42 mm). The ratio of absorption to the scattering is independent of thickness and decreases with increasing irradiation time. Moreover, the optical parameters as well as their ratios are in very good agreement in the two approaches of calculation. The values of absorption and scattering coefficients are independent of thickness. Furthermore, the average photon ranges in the samples containing no scattering and absorbing materials are about three times greater than those samples containing scattering materials. Conclusion: Our results suggest that light propagation with optical properties presented in this work could be applicable in diagnostic and therapeutic of the human biological tissue for photodynamic therapy.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded42    
    Comments [Add]    
    Cited by others 1    

Recommend this journal