Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 71  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission

Year : 2014  |  Volume : 6  |  Issue : 1  |  Page : 38-42

Subcutaneous implants for long-acting drug therapy in laboratory animals may generate unintended drug reservoirs

1 Department of Neurological Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
2 Department of Pathology and Medicine, School of Medicine, Division of Infectious Diseases and Public Health, The Program of Comparative Medicine, University of Maryland, Baltimore, Maryland, USA
3 Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA

Correspondence Address:
Michael Guarnieri
Department of Neurological Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
Login to access the Email id

Source of Support: Funding for the present study was supplied by the Maryland Industrial Partnership, a State of Maryland fund to promote the development of products and processes through industry/university research partnerships. M. Guarnieri received additional funding from Bamvet, Inc., and holds a significant financial interest in Bamvet. The project described was supported in part by Grant Number UL1 RR 025005 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH) and NIH Roadmap for Medical Research, and its contents are solely the responsibility of the authors and do not necessarily represent the official view of NCRR or NIH, Conflict of Interest: None

DOI: 10.4103/0975-7406.124315

Rights and Permissions

Background: Long-acting therapy in laboratory animals offers advantages over the current practice of 2-3 daily drug injections. Yet little is known about the disintegration of biodegradable drug implants in rodents. Objective: Compare bioavailability of buprenorphine with the biodegradation of lipid-encapsulated subcutaneous drug pellets. Methods: Pharmacokinetic and histopathology studies were conducted in BALB/c female mice implanted with cholesterol-buprenorphine drug pellets. Results: Drug levels are below the level of detection (0.5 ng/mL plasma) within 4-5 days of implant. However, necroscopy revealed that interstitial tissues begin to seal implants within a week. Visual inspection of the implant site revealed no evidence of inflammation or edema associated with the cholesterol-drug residue. Chemical analyses demonstrated that the residues contained 10-13% of the initial opiate dose for at least two weeks post implant. Discussion: The results demonstrate that biodegradable scaffolds can become sequestered in the subcutaneous space. Conclusion: Drug implants can retain significant and unintended reservoirs of drugs.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded70    
    Comments [Add]    
    Cited by others 3    

Recommend this journal