Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 1691  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission


ORIGINAL ARTICLE
Year : 2017  |  Volume : 9  |  Issue : 5  |  Page : 121-126

Effect of biomineralization ability on push-out strength of proroot mineral trioxide aggregate, mineral trioxide aggregate branco, and calcium phosphate cement on dentin: An In vitro evaluation


1 Department of Conservative Dentistry and Endodontics, Vinayaka Mission's Sankarachariyar Dental College, Salem, Tamil Nadu, India
2 Department of Conservative Dentistry and Endodontics, Yenepoya Dental College, Mangalore, Karnataka, India
3 Department of Conservative Dentistry and Endodontics, Kannur Dental College, Kannur, Kerala, India
4 Department of Oral Medicine and Radiology, AJ Shetty Dental College, Mangalore, Karnataka, India

Correspondence Address:
Vanita D Revankar
Department of Conservative Dentistry and Endodontics, Vinayaka Mission's Sankarachariyar Dental College, Salem, Tamil Nadu
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jpbs.JPBS_120_17

Rights and Permissions

Context: Biomineralization is a process which leads to the formation of an interfacial layer with tag-like structures at the cement-dentin interface. It is due to interaction of mineral trioxide aggregate (MTA) and Portland cement with dentin in phosphate-buffered solution (PBS). This study is aimed to evaluate the effect of influence of biomineralization process on push-out bond strength of ProRoot MTA (Dentsply Tulsa Dental, Tulsa, OK, USA), MTA Branco (Angelus Soluc¸o˜es Odontolo´gicas, Londrina, PR, Brazil) and calcium phosphate cement (BioGraft CPC). Aim: The aim of this study was to evaluate the effect of biomineralization process on the push-out strength of ProRoot MTA, MTA Branco, and CPC after mixing with 0.2% chlorhexidine gluconate solution (0.2% CHX) and 2% lidocaine solution (2% LA) on the bond strength of MTA-dentin. Materials and Methods: Dentin discs with uniform cavities were restored with ProRoot MTA, MTA Branco, and calcium phosphate cement after mixing with 0.2% CHX solution and 2% lidocaine solution. The samples were uniformly distributed into two groups. Experimental group being immersed in PBS solution and control group being immersed in saline for 2 months. Instron testing machine (Model 4444; Instron Corp., Canton, MA, USA) was used to determine the bond strength. Statistical Analysis Used: A two-way analysis of variance and post hoc analysis by Bonferroni test. Results: All samples immersed in experimental group displayed a significantly greater resistance to displacement than that observed for the samples in control group (P < 0.05). MTAs displayed a significantly greater resistance to displacement than calcium phosphate cements. Conclusion: The main conclusion of this study was that the push-out bond strength of the cements, mainly the MTA groups, was positively influenced by the biomineralization process.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

suppl
 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2158    
    Printed21    
    Emailed0    
    PDF Downloaded94    
    Comments [Add]    
    Cited by others 1    

Recommend this journal