Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 730  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission


ORIGINAL ARTICLE
Year : 2017  |  Volume : 9  |  Issue : 5  |  Page : 154-160

Effect of surface modifications on the retention of cement-retained implant crowns under fatigue loads: An In vitro study


1 Department of Prosthodontics and Crown and Bridge, Vivekanandha Dental College for Women, Elayampalayam, Tiruchengode, Namakkal, India
2 Department of Prosthodontics and Crown and Bridge, Rajah Muthiah Dental College and Hospital, Chidambaram, Tamil Nadu, India
3 Conservative Dentistry and Endodontics, Vivekanandha Dental College for Women, Elayampalayam, Tiruchengode, Namakkal, India
4 Department of Prosthodontics and Crown and Bridge, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India

Correspondence Address:
R Ajay
Department of Prosthodontics and Crown and Bridge, Vivekanandha Dental College for Women, Elayampalayam, Tiruchengode, Namakkal - 637 205, Tamil Nadu
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jpbs.JPBS_146_17

Rights and Permissions

Background: Masticatory forces cause fatigue to the dental luting agents, adversely affecting the retention of these cement-retained crowns. Sandblasting (SB) and diamond abrading the abutment surface improves the bond strength of luting agents. However, the effect of acid etching (AE) on the implant abutment surface and the effect of other surface modifications under masticatory load are yet to be documented. Purpose: The aim of the study was to evaluate the effect of abutment surface modifications on the retention of cement-retained restorations subjected to cyclic fatigue loads. Materials and Methods: Forty Ni-Cr copings were made on Cp-titanium laboratory analogs. The specimens were divided into two groups as Group I: Uniaxial tensile loading (UTL) and Group II: Offaxial cyclic loading followed by uniaxial tensile loading [CTL]. Further subgrouped as, subgroup I: Control (C), subgroup II: SB, subgroup III: AE, and subgroup IV: SB + AE. The copings were luted with Zn2(PO4)3and subjected to uniaxial tensile loading. Copings were recemented, and CTL was conducted. Two-way analysis of variance was used as the statistical test of significance. Results: In relation to the subgroups, the bond strength of Zn2(PO4)3was higher in Group I than in Group II. The bond strength in subgroup IV was superior in both Group I and Group II (547.170 N ± 5.752 and 531.975 N ± 6.221 respectively). Conclusions: For both UTL and CTL, abutment SB + AE elicited maximum coping retention followed by AE. Off-axial cyclic loading adversely affected the retention irrespective of the surface modifications.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

suppl
 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3070    
    Printed37    
    Emailed0    
    PDF Downloaded278    
    Comments [Add]    
    Cited by others 5    

Recommend this journal