Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 2769  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission


ORIGINAL ARTICLE
Year : 2018  |  Volume : 10  |  Issue : 2  |  Page : 83-89

In vitro antilithiatic potential of Kalanchoe pinnata, Emblica officinalis, Bambusa nutans, and Cynodon dactylon


1 School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
2 Dr. Satyendra Kumar Memorial (DKSM) College of Pharmacy, Ram Krishna Dharmarth Foundation (RKDF) University, Bhopal, Madhya Pradesh, India

Correspondence Address:
Dr. Papiya Bigoniya
DSKM College of Pharmacy, RKDF University, Gandhi Nagar, Bhopal, Madhya Pradesh 462024
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/JPBS.JPBS_18_18

Rights and Permissions

Objective: The study aims at the exploration of calcium oxalate (CaOx) crystal growth inhibition potential of Cynodon dactylon, Emblica officinalis, Kalanchoe pinnata, and Bambusa nutans ethyl acetate fraction rich in polyphenol and flavonoid. Materials and Methods: Ethyl acetate fraction was separated from the hydromethanolic extract of C. dactylon, E. officinalis, K. pinnata, and B. nutans followed by quantitative analysis for total polyphenol and flavonoid content. Ethyl acetate fraction of all the plants were subjected to in vitro screening for the inhibition of CaOx crystals growth induced by sodium oxalate. Results: The results signify rich presence of polyphenols and flavonoids in K. pinnata and E. officinalis ethyl acetate fractions followed by C. dactylon and B. nutans. Ethyl acetate fractions of B. nutans shoot, E. officinalis fruit, and K. pinnata leaf have excellent in vitro CaOx crystal growth inhibition potential based on both the comparative concentration and the time level to achieve IC50. Conclusion: The study outcome substantiates potential in vitro CaOx crystal dissolution and crystal growth inhibition properties of E. officinalis, B. nutans, C. dactylon, and K. pinnata. Rich presence of caffeic acid, ferulic acid, and luteolin in ethyl acetate fraction of B. nutans leaf, and chebulinic acid, chebulagic acid, gallic acid, ellagic acid, and quercetin of E. officinalis may have produced prominent crystal aggregation inhibition response.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

suppl
 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2458    
    Printed33    
    Emailed0    
    PDF Downloaded117    
    Comments [Add]    

Recommend this journal