Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 1457  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission

Year : 2019  |  Volume : 11  |  Issue : 5  |  Page : 24-29

A three-dimensional finite element analysis of Aramany class I obturator fabricated with different alloys

1 Department of Prosthodontics, PMNM Dental College and Hospital, Bagalakot, India
2 Department of Prosthodontics, Perfect Dental Studio, Bangalore, Karnataka, India
3 Department of Periodontology, Perfect Dental Studio, Bangalore, Karnataka, India

Correspondence Address:
Dr. Kashinath C Arabbi
Department of Prosthodontics, P.M. Nadagouda Memorial Dental College and Hospital, Bagalkot, Karnataka
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/JPBS.JPBS_226_18

Rights and Permissions

Aim: The aim of the research was to develop a model that accurately represents an Aramany class I defect and its obturator prostheses fabricated with cobalt–chromium alloy and titanium alloy to compare the deflection and the stress distribution in the rehabilitated area. Materials and Methods: Aramany class I defect and the obturator prostheses were generated geometrically using ANSYS 14.5; both were superimposed on each other to mimic the prostheses and the maxilla as one unit. Meshing of models was carried out using hypermesh software and materialistic properties were assigned. The 120 newton load was constituted on the teeth in different directions. Statistical Analysis Used: Statistical analysis of Finite element was not possible. Self-explanatory decoding results in the software were used. Results: The stress distribution and deflection executed by ANSYS provided results that enabled the tracing of Von Mises stress and deflection field in the form of color-coded bands with values in mega pascal. Conclusions: The study shows that Von Mises stresses are higher for the frame work fabricated with cobalt–chromium alloy compared to titanium alloy. The framework made of titanium alloy showed more deflection than cobalt–chromium alloy.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded40    
    Comments [Add]    

Recommend this journal