Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 1872  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission


ORIGINAL ARTICLE
Year : 2020  |  Volume : 12  |  Issue : 3  |  Page : 317-323

Inhibition of pancreatic elastase in silico and in vitro by Rubus rosifolius leaves extract and its constituents


1 Department of Phytochemistry, Faculty of Pharmacy, Pancasila University, Jakarta, Indonesia; Department of Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
2 Department of Phytochemistry, Faculty of Pharmacy, Pancasila University, Jakarta, Indonesia
3 Department of Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
4 Department of Phytochemistry, Faculty of Pharmacy, Pancasila University, Jakarta, Indonesia; Research Centre for Chemistry Indonesian Institute of Sciences, Jakarta, Indonesia
5 Department of Pharmacognosy, Faculty of Pharmacy, Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia

Correspondence Address:
Prof. Berna Elya
Faculty of Pharmacy, Universitas Indonesia, Jakarta, 16424
Indonesia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jpbs.JPBS_271_19

Rights and Permissions

Objective: Elastases are protease enzymes, which mainly hydrolyze proteins of the connective tissue, so they have a significant impact on human disease. Rubus rosifolius is one of the Rubus species found in Indonesian mountains, and it has potential as an elastase inhibitor. The objective of this research was to examine the in vitro elastase inhibitor activity of R. rosifolius leaves and to dock different ligands of its constituents against target protein of Porcine Pancreatic Elastase (PPE) receptor. Method: Dried leaves powder of R. rosifolius was extracted using Soxhlet apparatus with n-hexane, ethyl acetate, and methanol. The extract was evaporated, and in vitro elastase inhibitor activity was determined using PPE with the quercetin used as control positive. Selected nine constituents of R. rosifolius were evaluated on the docking behavior of elastase receptor using Protein–Ligand ANT System (PLANTS) computational software with PPE enzyme with Protein Data Bank (PDB) file 1BRU. Result: The methanol extract showed significantly inhibited elastase with IC50 186.13 μg/mL, but ethyl acetate extract showed weak activity, and n-hexane extract did not show any activity. Docking studies and binding free energy calculations and hydrogen bonding with some amino acids revealed that ellagic acid showed the least binding energy for the target enzyme. Conclusion: This research has opened new insights into understanding that constituents of R. rosifolius methanol extract are potential inhibitors against elastase, and suggested the active compound is ellagic acid.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed260    
    Printed31    
    Emailed0    
    PDF Downloaded15    
    Comments [Add]    

Recommend this journal