Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 166  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission


ORIGINAL ARTICLE
Year : 2020  |  Volume : 12  |  Issue : 6  |  Page : 831-835

Effect of non-hydrogen peroxide on antibacterial activity of Malaysian Meliponini honey against Staphylococcus aureus


1 School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
2 Department of Microbiology, Umaru Musa Yar’adua University Katsina, Katsina, Nigeria

Correspondence Address:
Dr. Abu Bakar Mohd Hilmi
School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus, Terengganu.
Malaysia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jpbs.JPBS_280_19

Rights and Permissions

Introduction: Stingless bee is an insect that belongs to the family Apidae. Its name is based on its disability of stinging. It has a high product of Meliponini honey and propolis by which are commonly referred to as stingless bee honey and stingless bee propolis. Meliponini honey is one of the crucial natural sources and has the potential to kill infectious microorganisms. Previous studies have proved that the antibacterial activity of natural honey was an effect of hydrogen peroxide, a substance contained in the honey. However, these claims were contradicting with too many studies. Objective: Therefore, this study aimed to identify the antibacterial activity of Malaysian Meliponini honey which contained non-hydrogen peroxide against Staphylococcus aureus, an opportunistic microbial. Materials and Methods: Meliponini honey was used as an antibacterial agent for the treatment of S. aureus in agar well diffusion assay. An amplex red hydrogen peroxide kit was used to identify the hydrogen peroxide in the honey sample. Meanwhile, non-hydrogen peroxide activity was performed by using honey-catalase treated. Results: For the first time, we found that hydrogen peroxide was absent in all Meliponini honey samples. Meliponini honey has higher antibacterial activity (13.30 ± 0.56 mm) compared to Apis honey (9.03 ± 0.22 mm) in agar well diffusion assay. Discussion: Non-hydrogen peroxide in Meliponini honey is a bioactive compound and beneficial to kill the microbial infection. Conclusion: Antibacterial activity of Malaysian Meliponini honey is directly contributed by non-hydrogen peroxide.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed221    
    Printed16    
    Emailed0    
    PDF Downloaded2    
    Comments [Add]    

Recommend this journal