Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 7984  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission

Year : 2021  |  Volume : 13  |  Issue : 5  |  Page : 272-275

A new zinc reinforced glass ionomer cement: A boon in dentistry

1 Consultant Endodontist, Patna, Bihar, India
2 Department of Public Health Dentistry, Sarjug Dental College and Hospital, Darbhanga, Bihar, India
3 Dentist, Primary Health Centre, Dhanarua, Patna, Bihar, India
4 Consultant Endodontist, Suryapeth, Telangana, India
5 Department of Prothodontics and Implantology, Rama Dental College and Hospital, Kanpur, Uttar Pradesh, India
6 Department of Dentistry, Anugrah Narayan Magadh Medical College and Hospital, Gaya, Bihar, India

Correspondence Address:
Manoj Kumar
Department of Prothodontics and Implantology, Rama Dental College and Hospital, Kanpur, Uttar Pradesh
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jpbs.JPBS_730_20

Rights and Permissions

Background: Conventional glass ionomer cement (CGIC) has many beneficial properties, but it has poor physical and mechanical properties. Therefore, new glass ionomer cement (GIC) is manufactured by adding zinc to improve the mechanical properties of GIC ChemFil Rock. This material possesses better flexural tensile strength and compressive strength in comparison to conventional to CGIC. Objectives: The aim of this study was to compare four properties of ZRGI like fracture toughness, surface micro-hardness, abrasive wear, and roughness to other GIC material, which are commercially available as: resin-coated glass ionomer (EQUIA FIL). Materials and Methods: The study was done in dual phase. In phase-1, micro-hardness surface roughness, abrasion of four GIC and a composite resin as control was analyzed and in phase-2, fracture toughness of four GIC was done at 24 h interval so that all cement achieve its peak strength. Results: Micro-hardness value of ChemFil Rock was lowest among different GIC groups. All four GIC group exhibit similar abrasion capacities, while composite were more wear-resistant significantly. Roughness change was highest on ChemFil Rock compared to other GIC. EQUIA FIL has the highest fracture toughness, followed by ChemFil Rock. Conclusion: We can conclude that incorporating zinc in the matrix of chemfil rock increases fracture toughness and good abrasive wear, but it does not improve micro-hardness or surface roughness.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded149    
    Comments [Add]    
    Cited by others 1    

Recommend this journal