Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 736  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission




 
 Table of Contents  
ORIGINAL ARTICLE
Year : 2021  |  Volume : 13  |  Issue : 5  |  Page : 370-374  

In vivo comparison of crestal bone heights following implant placement with “Flapless” and “Flap” techniques in the sites of early loaded implants


1 Department of Prosthodontics, Maharishi Markandeshwar College of Dental Sciences and Research, MMU, Mullana, India
2 Department of Prosthodontics, Government Dental College, Shimla, Himachal Pradesh, India
3 Department of Pedodotics, Government Dental College and Hospital, Raipur, Chhattisgarh, India
4 Department of Orthodontics, Government Dental College and Hospital, Raipur, Chhattisgarh, India
5 Department of Dental Surgery, Raipur Institute of Medical Sciences, Raipur, Chhattisgarh, India
6 Department of Prosthodontics, Government Dental College and Hospital, Raipur, Chhattisgarh, India

Date of Submission24-Sep-2020
Date of Decision26-Sep-2020
Date of Acceptance26-Sep-2020
Date of Web Publication05-Jun-2021

Correspondence Address:
Pooja Negi
Department of Prosthodontics, Government Dental College, Shimla, Himachal Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jpbs.JPBS_580_20

Rights and Permissions
   Abstract 


Purpose: The purpose was to evaluate the difference in crestal bone loss (CBL) around implants with flap and flapless methods followed by early loading. Materials and Methods: Twenty implants were placed in twenty patients – ten using flap and ten using flapless techniques. The difference in CBL was measured on standardized digital periapical radiograph taken at 0 week, 6 weeks, 12 weeks, and 6 months. Results: The present study showed the mean CBL on proximal surfaces when evaluated at intervals of 0 week, 6 weeks, 12 weeks, and 6 months for flapless method was significantly lower than with flap method the values of which were +0.07 mm against +0.26 mm on mesial side and +0.15 mm against +0.33 mm on distal side at 6 months. Conclusion: The flapless approach is a predictable procedure when patient selection and surgical technique are appropriate, and results in lesser CBL.

Keywords: Crestal bone loss, early loading, flapless surgery, implant, osseointegration


How to cite this article:
Pahuja SK, Negi P, Singh A, Singh GB, Rayast D, Minz M. In vivo comparison of crestal bone heights following implant placement with “Flapless” and “Flap” techniques in the sites of early loaded implants. J Pharm Bioall Sci 2021;13, Suppl S1:370-4

How to cite this URL:
Pahuja SK, Negi P, Singh A, Singh GB, Rayast D, Minz M. In vivo comparison of crestal bone heights following implant placement with “Flapless” and “Flap” techniques in the sites of early loaded implants. J Pharm Bioall Sci [serial online] 2021 [cited 2021 Jun 23];13, Suppl S1:370-4. Available from: https://www.jpbsonline.org/text.asp?2021/13/5/370/317556




   Introduction Top


Over the course of years, implant dentistry has had the opportunity to observe long-term success and failure with various techniques and devices.[1] Conventionally, osseointegrated dental implantation was performed by raising a flap that involved soft-tissue flap reflection which facilitates visibility and access at the operating site and is considered advantageous in the esthetic zone. However, reflection of mucoperiosteal flap compromises the vascular supply of bone, which may lead to crestal bone loss (CBL) and long-term esthetic complications and demands the introduction of sutures after implant placement.[2],[3],[4],[5]

To address these problems, an alternative technique, that is, flapless implant placement has been introduced for patients with sufficient bone volume in the implant recipient site to minimize postoperative peri-implant tissue loss and to overcome the challenge of soft-tissue management during or after surgery.[6] Flapless implant placement avoids the creation of a flap by minimal removal of soft tissue and creation of osteotomy site, thereby resulting in less postoperative patient discomfort. Furthermore, it leaves the periosteum intact on the buccal and lingual aspects of the ridge so as to maintain a proper blood supply at the implantation site, reducing the possibility of resorption.[1],[2]

Although flapless implant placement is advantageous to patients, implant placement with this technique is a blind procedure, and bone perforations are more likely to occur.[7]

Nowadays, the concept of early loading is becoming popular due to reduced patient discomfort and dysfunction.[8],[9],[10] Early loading protocols demand loading of implants from 1 week to 2 months after insertion.[11],[12],[13],[14],[15],[16] In light of the various pros and cons of each of the flap and flapless techniques on early loading, it was considered potentially useful to compare the CBL and peri-implant soft tissue by two techniques.


   Materials and Methods Top


A total of twenty implants (ten in each group) were placed in the edentulous mandibular posterior region. Ethical clearance was obtained from the ethical committee. After an explanation of the proposed study criteria, including alternative treatment options, potential risks, and benefits, a signed informed consent was obtained from all the selected individuals prior to the dental implant placement.

The selected participants were grouped on the basis of type of surgery during implant placement as: Group I: implants placed by flap technique and Group II: implants placed by flapless technique. This study included patients above 18 years of age who were medically fit in which twenty implants were placed in the posterior mandibular edentulous region, with sufficient amount of bone width of at least 4.5 mm without undercuts of >15° measured radiographically and keratinized tissue of at least 5 mm measured with the help of William's probe.

Detailed patient history was taken before selecting patients for procedure. All vital signs were checked and a complete hemogram was done to evaluate the fitness of the patient for implant placement followed by complete oral prophylaxis.

Preoperative intraoral periapical radiograph and orthopantomogram (OPG) provided the necessary information regarding the available bone and distance of vital structures.

A metal sphere of predetermined diameter (5 mm) was used to calibrate the length and diameter of the dental implant to be placed. The digital OPG obtained was then used to calibrate the dental implant length.

A custom-made polysiloxane putty jig was fabricated for each patient to standardize the radiograph in terms of angulations and position of the film relative to the X-ray beam. The periapical radiographs were made with the long cone paralleling technique using this putty jig for the standardization of the projection and film placement during the follow-up visits.

Diagnostic impression and models were made prior to surgery. A diagnostic wax-up of the involved tooth was done and acrylic surgical stent was fabricated based on wax-up to facilitate implant placement. Bone mapping was done followed by surgical stent fabrication to determine the width of the alveolar bone bucco-lingually.

Surgical preparation

Implant placement using flap technique

Local anesthesia was administered, and crestal incision was given for full-thickness flap reflection, to expose the implant site. A surgical stent was then placed and the implant site was marked with the help of a pilot drill. After marking the implant site, an osteotomy site of required dimensions was created. The implants were then inserted into this osteotomy site, which were placed slightly below the level of alveolar crest (1 mm below the crestal bone) [Figure 1]. Healing abutments were then screwed to the implants immediately after implant placement [Figure 2]. Once the healing abutments were placed, the surgical site was thoroughly irrigated and the flap was closed with tight nonresorbable 3-0 silk sutures to achieve water-tight closure. Medications were prescribed followed by surgery and suture placement. Postoperative instructions were given to the patients regarding diet and maintenance of oral hygiene.
Figure 1: Flap reflection followed by implant placement

Click here to view
Figure 2: Approximation of flap by 3.0 silk sutures and healing abutment in position

Click here to view


Implant placement using flapless surgeries

Routine presurgical protocol was followed for each patient as with flap technique. The site selection for flapless placement of the implant was done on the basis of bone width of at least 4.5 mm without undercuts of >15°, and keratinized tissue of at least 5 mm. All implants in this technique were inserted after the osteotomy site was created using surgical stents and soft-tissue punch [Figure 3]. After marking the implant site, an osteotomy site was created in which implants were placed. The implants were placed slightly below the level of the alveolar crest (1 mm below the crestal bone). Healing abutments were then screwed to the implants immediately after implant placement [Figure 4]. Postoperative instructions were given to the patient regarding diet and maintenance of oral hygiene. Medications were prescribed thereafter.
Figure 3: Soft-tissue punch for tissue removal for implant placement

Click here to view
Figure 4: Healing abutment in place after implant placement with flapless technique which involves soft-tissue removal with punch and no suture placement

Click here to view


After implant placement by both the techniques, the implants were left for osseointegration for a period of 2 months and then early loaded with Porcelain-Fused-to-Metal crown.

The patients were recalled for radiographic evaluation which was made at 6 weeks, 12 weeks, and 6 months of implant placement for evaluation of crestal bone changes. The periapical radiographs were obtained and digitized using Digimizer Image analysis, MedCalc Software version 4.3.5.0, Ostend, Belgium. The known implant length was used to calibrate the images in the computer software. After digitizing the radiograph, the measurements were recorded on proximal sides. Comparative measurements of crestal bone levels of mesial and distal sides adjacent to the implants were made. A minimum of three readings were made for each case, and the average values were used to calculate the change of crestal bone [Figure 5] and [Figure 6]. Statistical analysis was done using paired t-test.
Figure 5: Crestal bone loss measurements on the mesial and distal sides of the implant placed by flap technique after 6 months using software Digimizer Image analysis. Medcalc Software, Version 4.3.5.0

Click here to view
Figure 6: Crestal bone loss measurement on the mesial and distal sides of the implant placed by flapless technique after 6 months using software Digimizer Image analysis. Medcalc Software, Version 4.3.5.0

Click here to view



   Results Top


The study showed that change in the mean for crestal bone on mesial surfaces when evaluated at the interval of 0 week, 6 weeks, 12 weeks, and 6 months for flapless method was significantly lower than that with traditional flap method; the values of which were nil, −0.23, +0.34, and + 0.07 mm, respectively, for flap technique against nil, 0.00, +0.25, and + 0.26 mm, respectively, on the mesial side for flapless technique [Table 1] and [Table 2].
Table 1: Evaluation of mean values, change in mean and P with flap technique on mesial and distal side at 0 weeks, 6 weeks, 12 weeks, and 6 months

Click here to view
Table 2: Shows evaluation of mean values, change in mean and P with flapless technique on mesial and distal side at 0 weeks, 6 weeks, 12 weeks, and 6 months

Click here to view


Similar results were seen in change in the mean for CBL on distal surfaces when evaluated at the interval of 0 week, 6 weeks, 12 weeks, and 6 months; the values of which were nil, −0.19, +0.31, and + 0.15 mm, respectively, for flap technique against nil, −0.08, +0.33, and + 0.33 mm, respectively, on the distal side for flapless technique [Table 1] and [Table 2].

The mean value showed an increase in crestal bone level for both the techniques over a period of 6 months both at the mesial and distal sides of the implants, but the increase was found to be statistically significant (P < 0.05) and greater for flapless technique when compared with flap technique, which was statistically insignificant.


   Discussion Top


The present study showed that average CBL on proximal surfaces when evaluated at the intervals of 6 months for flapless method was significantly lower than that with traditional flap method; the values of which were + 0.07 mm against + 0.26 mm on the mesial side and + 0.15 mm against + 0.33 mm on the distal side. This indicates that the loss of bone during the 6-month period was significantly lower with flapless method compared to that with flap method. The present study is in accordance with Sennerby et al., who compared the average marginal bone loss occurring with flap versus flapless implant surgery. The authors reported slightly less bone loss for the flapless approach (–2.1 mm, standard deviation [SD] 1.4 mm; n = 70 implants) versus that of the conventional approach (–2.8 mm, SD 1.5 mm; n = 39 implants).[17]

In another study conducted by Becker et al., implants were placed via the flapless approach with a delayed loading protocol. Probing depths were measured at baseline and up to 1 month after the delivery of the final restoration. The change between those two time points was clinically insignificant (baseline: 2.2 mm [SD 0.9 mm]; up to 1 month: 2.3 mm [SD 0.8 mm]) and is in context with the present study.[18] The explanation of these findings is that when the implant is placed using flap procedures, the implant is positioned closer to the oral environment and plaque accumulation is considerable because of flap elevation and incomplete seal between the flaps due to placement of sutures. In addition, due to difficulty of flap adaptation on the surface of implant and suture loosening, the implant surface is more susceptible to exposure. All these allow the marginal bone to be invaded by the bacteria and harmed by the inflammation process and consequently bone resorption. Kan et al. concluded that to reduce the possibility of postoperative peri-implant tissue loss and to overcome the challenge of soft-tissue management, the concept of flapless implant surgery has been introduced for patients with the sufficient bone volume in the implant recipient site with few prerequisites for FL surgery such as a minimum of 4.5–5.0 mm of keratinized gingival tissue and at least 4–4.5 mm of alveolar bone width without undercuts >15°.[1],[6],[19],[20],[21],[22],[23],[24]

Under the guidelines of the present study, the results suggest that flapless surgical approach followed by early loading is a good option for implant placement with less crestal bone resorption when compared with flap technique followed by early loading.


   Conclusion Top


Flapless implant placement reduces the possibility of postoperative CBL and peri implant tissue loss and can benefit the patient. The procedure is more congenial because it does not involve raising extensive flaps and placement of sutures. Hence; it results in less bleeding with reduced postoperative discomfort.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Hahn J. Single-stage, immediate loading, and flapless surgery. J Oral Implantol 2000;26:193-8.  Back to cited text no. 1
    
2.
Rousseau P. Flapless and traditional dental implant surgery: An open, retrospective comparative study. J Oral Maxillofac Surg 2010;68:2299-306.  Back to cited text no. 2
    
3.
Campelo LD, Camara JR. Flapless implant surgery: A 10-year clinical retrospective analysis. Int J Oral Maxillofac Implants 2002;17:271-6.  Back to cited text no. 3
    
4.
Gomez-Roman G. Influence of flap design on peri-implant interproximal crestal bone loss around single-tooth implants. Int J Oral Maxillofac Implants 2001;16:61-7.  Back to cited text no. 4
    
5.
Van der Zee E, Oosterveld P, Van Waas MA. Effect of GBR and fixture installation on gingiva and bone levels at adjacent teeth. Clin Oral Implants Res 2004;15:62-5.  Back to cited text no. 5
    
6.
Ozan O, Turkyilmaz I, Yilmaz B. A preliminary report of patients treated with early loaded implants using computerized tomography-guided surgical stents: Flapless versus conventional flapped surgery. J Oral Rehabil 2007;34;835-40.  Back to cited text no. 6
    
7.
Cannizzaro G, Felice P, Leone M, Checchi V, Esposito M. Flapless versus open flap implant surgery in partially edentulous patients subjected to immediate loading: 1-year results from a split-mouth randomised controlled trial. Eur J Oral Implantol 2011;4:177-88.  Back to cited text no. 7
    
8.
Meizi E, Meir M, Laster Z. New-design dental implants: A 1-year prospesctive clinical study of 344 consecutively placed implants comparing immediate loading versus delayed loading and flapless versus full thickness flap. Quintessence Int Pub 2014;29:e14-21.  Back to cited text no. 8
    
9.
Branemark PL, Hansson BO, Adell R. Osseointegrated implants in the treatment of edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg 1977;2:1-13.  Back to cited text no. 9
    
10.
Gotfredson K, Hjorting-Hansen E. Histologic and histomorphometric evaluation of submerged and non-submerged titanium implants. In: Laney WR, Tolman DE, editors. Tissue Integration in Oral, Orthopedic and Maxillofacial Reconstruction Quintessence. Chicago: Mansa STM Publishers; 1990. p. 31-40.  Back to cited text no. 10
    
11.
Zhu Y, Zheng X, Zeng G, Xu Y, Qu X, Zhu M, et al. Clinical efficacy of early loading versus conventional loading of dental implants. Sci Rep 2015;5:15995.  Back to cited text no. 11
    
12.
Kwon JY, Kim YS, Kim CW. Assessing changes of peri-implant bone using digital subtraction radiography. J Korean Acad Prosthodont 2001;39:273-80.  Back to cited text no. 12
    
13.
Papaspyridakos P, Chen CJ, Singh M, Weber HP, Gallucci GO. Success criteria in implant dentistry: A systematic review. J Dent Res 2012;91:242-8.  Back to cited text no. 13
    
14.
Sclar AG. Guidelines for flapless surgery. J Oral Maxillofac Surg 2007;65:20-32.  Back to cited text no. 14
    
15.
Al-Juboori MJ, Ab Rahman S, Hassan A, Bin Ismail IH, Tawfiq OF. What is the effect of initial implant position on the crestal bone level in flap and flapless technique during healing period? J Periodontal Implant Sci 2013;43:153-9.  Back to cited text no. 15
    
16.
Romero-Ruiz MM, Mosquera-Perez R, Gutierrez-Perez JL, Torres-Lagares D. Flapless implant surgery: A review of the literature and 3 case reports. J Clin Exp Dent 2015;7:e146-52.  Back to cited text no. 16
    
17.
Sennerby L, Rocci A, Becker W, Jonsson L, Johansson LA, Albrektsson T. Short-term clinical results of Nobel direct implants: A retrospective multicentre analysis. Clin Oral Implants Res 2008;19:219-26.  Back to cited text no. 17
    
18.
Becker W, Goldstein M, Becker BE, Sennerby L. Minimally invasive flapless implant surgery: A prospective multicenter study. Clin Implant Dent Relat Res 2005;7 Suppl 1:S21-7.  Back to cited text no. 18
    
19.
Flanagan D. Flapless dental implant placement. J Oral Implantol 2007;33:75.  Back to cited text no. 19
    
20.
Kan JY, Rungcharassaeng K, Ojano M, Goodacre CJ. Flapless anterior implant surgery: A surgical and prosthodontic rationale. Pract Periodontics Aesthet Dent 2000;12:467-74.  Back to cited text no. 20
    
21.
Xu L, Wang X, Zhang Q, Yang W, Zhu W, Zhao K. Immediate versus early loading of flapless placed dental implants: A systematic review. J Prosthet Dent 2014;112:760-9.  Back to cited text no. 21
    
22.
Cochran DL, Buser D, Ten Bruggenkate CM, Weingart D, Taylor TM, Bernard JP, et al. The use of reduced healing times on ITI implants with a sandblasted and acid-etched (SLA) surface: Early results from clinical trials on ITI SLA implants. Clin Oral Implants Res 2002;13:144-53.  Back to cited text no. 22
    
23.
Nordin T, Nilsson R, Frykholm A, Hallman M. A 3-arm study of early loading of rough-surfaced implants in the completely edentulous maxilla and in the edentulous posterior maxilla and mandible: Results after 1 year of loading. Int J Oral Maxillofac Implants 2004;19:880-6.  Back to cited text no. 23
    
24.
Jeong SM, Choi BH, Kim J, Xuan F, Lee DH, Mo DY, et al. A 1-year prospective clinical study of soft tissue conditions and marginal bone changes around dental implants after flapless implant surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;111:41-6.  Back to cited text no. 24
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6]
 
 
    Tables

  [Table 1], [Table 2]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
   Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed50    
    Printed0    
    Emailed0    
    PDF Downloaded1    
    Comments [Add]    

Recommend this journal