Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 644  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission


ORIGINAL ARTICLE
Year : 2021  |  Volume : 13  |  Issue : 5  |  Page : 688-691

Influence of occlusal bite forces on teeth with altered periodontal support: A three-dimensional finite element stress analysis


Department of Periodontics, Mansarovar Dental College, Bhopal, Madhya Pradesh, India

Correspondence Address:
Richa Agrawal
Department of Periodontics, Mansarovar Dental College, Kolar Road, Bhopal, Madhya Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jpbs.JPBS_785_20

Rights and Permissions

Background: Masticatory forces generate various degrees of stress and strain in the periodontium of teeth which determine the clinical functions and load-bearing capacity of the teeth. There are few in vitro studies that have analyzed stress generated due to combined forces acting on the teeth. Thus, the objective of the present study was to do a comparative analysis of the influence of various stresses on the periodontal ligament and alveolar bone of maxillary central incisor with normal bone height and reduced bone height under simulated standard masticatory using finite element stress analysis. Methodology: A 3D model of the tooth was obtained with the help of ANSYS software. These models were subjected to various oblique forces, i.e., 100N and 235.9N, applied at 45° angle on the lingual surface of the maxillary central incisor and stress values were recorded in three dimensions. The results from FE analysis were analyzed using 3D Von Mises Criteria. Results: It was observed that in healthy periodontium; it was observed that among the periodontal structure studied, the maximum stress levels were exerted on root followed by cortical bone, cancellous bone, and PDL, irrespective of the force, as compared to the diseased periodontium, in which the bone height was reduced, the maximum stresses were on root followed by cortical bone, PDL, and cancellous bone. Conclusion: The main factor governing the success of any periodontal procedure depends on the height of the remaining bone and the amount of force exerted on to the tooth and the stress generated within the tooth. The finite element method could be of substantial importance in this respect as it can assess the stresses of various occlusal forces on the periodontal ligament, root, cortical bone, and cancellous bone of teeth in a periodontally healthy and diseased state.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

suppl
 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed152    
    Printed0    
    Emailed0    
    PDF Downloaded11    
    Comments [Add]    

Recommend this journal