Journal of Pharmacy And Bioallied Sciences
Journal of Pharmacy And Bioallied Sciences Login  | Users Online: 1754  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 
    Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission




 
 Table of Contents  
ORIGINAL ARTICLE
Year : 2021  |  Volume : 13  |  Issue : 5  |  Page : 757-760  

Comparative evaluation of the effect of 0.2% chlorhexidine, 2% lemongrass oil, and 2% tea tree oil mouth rinse on salivary pH: An In vivo study


1 Department of Oral Pathology and Microbiology, Vivekanandha Dental College for Women, Tiruchengode, Tamil Nadu, India
2 Department of Oral Medicine and Radiology, People's College of Dental Sciences and Research Center, Bhopal, Madhya Pradesh, India
3 Vivekanandha Dental College for Women, Tiruchengode, Tamil Nadu, India

Date of Submission12-Oct-2020
Date of Decision16-Nov-2020
Date of Acceptance18-Nov-2020
Date of Web Publication05-Jun-2021

Correspondence Address:
Saranya Manikandan
Department of Oral Pathology, Vivekanandha Dental College for Women, Elayampalayam, Tiruchengode, Tamil Nadu
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jpbs.JPBS_667_20

Rights and Permissions
   Abstract 


Background: Mouthwashes containing essential oils are used in the prevention and treatment of periodontal diseases. Lemongrass oil (LGO) belongs to a section of andropogen called cymbogam of the family germineae and from it, the LGO is extracted. Tea tree oil (TTO) is extracted from Melaleuca alternifolia leaves (Myrtaceae family). Aim and Objective: The aim of the study is to evaluate the pH of saliva before and after using LGO and TTO mouth rinse and to determine its relevance to the oral health status. Materials and Methods: A purposive sample of 90 participants aged between 26 and 38 years were included in the study. The PH before and after the use of the chlorhexidine, LGO, and TTO mouthwashes are noted using the GC PH strips and a comparative study was made. Statistical analysis was performed using paired t-test. P < 0.05 was considered statistically significant. Results: Comparative analysis was made with Wilcoxon signed-ranks test and found that the TTO gives a greater increase in salivary pH with a P = 0.001** (P < 0.05) which is found to be statistically significant. Conclusion: The study conducted shows beneficial effects of TTO and LGO mouth rinse. Further studies with larger samples may produce more reliable values.

Keywords: Chlorhexidine, lemongrass oil, mouth rinse, salivary pH, tea tree oil


How to cite this article:
Manikandan S, Bhambal AM, Ratchambiga K S, Nithiela M, Swatheka J K, Sridarshini B. Comparative evaluation of the effect of 0.2% chlorhexidine, 2% lemongrass oil, and 2% tea tree oil mouth rinse on salivary pH: An In vivo study. J Pharm Bioall Sci 2021;13, Suppl S1:757-60

How to cite this URL:
Manikandan S, Bhambal AM, Ratchambiga K S, Nithiela M, Swatheka J K, Sridarshini B. Comparative evaluation of the effect of 0.2% chlorhexidine, 2% lemongrass oil, and 2% tea tree oil mouth rinse on salivary pH: An In vivo study. J Pharm Bioall Sci [serial online] 2021 [cited 2021 Nov 30];13, Suppl S1:757-60. Available from: https://www.jpbsonline.org/text.asp?2021/13/5/757/317612




   Introduction Top


Dental health problems such as dental caries, periodontitis, and oral malordor are always initiated at the interface between the microbial ecosystem and host tissue.[1] Saliva being an effective antimicrobial agent in the oral cavity maintains the oral pH at near neutral (pH 6.7–7.3). Lower salivary pH promotes the growth of harmful organisms creating a favorable environment for the initiation of dental caries and periodontitis.[2]

Compelling reasons exist to use saliva as a diagnostic fluid. It meets the demand for being inexpensive, noninvasive and easy to use diagnostic methods.

Essential oils are ideal for the use in oral care products because they are both antibacterial and nontoxic a rare combination. Mouthwashes containing essential oils are used in the prevention and treatment of periodontal diseases.[3]

Lemongrass oil (LGO) belongs to a section of andropogen called cymbogam of the family germineae and from it, the LGO is extracted. Tea tree oil (TTO) is extracted from Melaleuca alternifolia leaves (Myrtaceae family).[4] This oil is effective against a high number of gram-positive and gram-negative bacteria as well as fungi.[5]

This study is aimed at the evaluation of the pH of saliva before and after using LGO and TTO mouth rinse and to determine its relevance to the oral health status.


   Materials and Methods Top


A purposive sample of 90 participants aged between 26 and 38 years were included in the study. The study was conducted over a period of 1 month and was carried out at a private hospital in Dharmapuri, Tamil Nadu, India. Informed oral and written consent was obtained from all the participants participating in the study.

Inclusive criteria

  • Healthy participants aged between 26 and 38 years without any known systemic condition
  • Participants with informed written consent
  • Participants with no active carious lesions
  • No history of use of antimicrobial agents or any other drugs (up to within 4 weeks).


Exclusive criteria

  • Participants with a known history of allergy to any mouth rinse or drug
  • Participants with any systemic illness
  • Participants using any other commercially available mouth rinse products
  • Participantss using any other oral hygiene aids other than routine teeth brushing.


The participants who fulfilled the inclusion criteria were selected and randomly divided into three groups with 30 participants in each group.

  • Group A: Chlorhexidine (CH) group
  • Group B: LGO group
  • Group C: TTO group.


The groups are trailed with different mouthwashes containing CH, LGO and TTO, mouthwashes, respectively. Constituents of the mouthwashes include,

TTO - 1, 8 - cineole, terpinen-4-ol, alpha-terpineol, and gamma-terpinen.

LGO - Geranial, neral and myrcene.

CH - CH gluconate, 11.6% alcohol, glycerin, PEG-40 sorbitan diisostearate, sodium saccharin, and flavor.

Preparation of lemongrass oil mouth rinse

Fresh LGO (packing date < 1 month) was procured from the local market. Two percent of LGO was prepared with 2 g of LGO diluted in 100 mL warm water for 5 min (10 mL for each participant).

Preparation of tea tree oil mouthrinse

Fresh TTO (packing date <1 month) was procured from the local market. Two percent TTO was prepared with 2 g of TTO diluted in 100 mL warm water for 5 min (10 mL for each participant).

Salivary pH measurements

A volume of 2 mL saliva samples was collected before the commencement of mouth rinsing, baseline, and after 1 h rinsing. Unstimulated whole saliva samples were collected using Navazesh[6] spitting method by pooling saliva for 60 s and then spitting in a disposable container sitting in an upright position in a well-lit room with good ventilation. Saliva was collected in the morning between 10.00 am and 10.30 am to prevent any bias in the concentration of saliva due to circadian rhythm. Participants were also informed not to eat or drink anything (except water) 1 h before saliva collection to minimize possible food debris and stimulation of saliva. Salivary pH was measured using GC pH strips. A single sheet was dipped into the saliva till it is fully wet and removed immediately. After 30 s, the acid produced reacts to these pH indicators, thus leading to colorimetric change, which was compared with color code chart, and the pH value was noted.

After the baseline recording of salivary pH, the designated mouth rinse was dispensed to the respective groups. Group A received TTO, Group B received LGO mouth rinse, and Group C received CH mouth rinse. The PH before and after the use of the mouthwashes are note using the GC pH strips and a comparative study was made. Statistical analysis was done using a paired t-test. P < 0.05 was considered statistically significant.


   Results Top


[Table 1], [Table 2], and [Graph 1], [Graph 2] show the demographic distribution among the participants, which was statistically not significant (P > 0.001). [Table 3] and [Graph 3] show the comparison of mean pH scores for all the three groups (CH, LGO, and TTO), which revealed that the pH of saliva was increased in the participants after rinsing with all the three mouth rinses (CH, LGO, and TTO). The statistical analysis shows that the treatment with TTO, LGO, and CH are effective. Similarly, when pre- and post-mean pH was compared in the CH, LGO, and TTO groups, it was found that pH was higher in the TTO group as shown in [Table 3] and [Graph 3]. The results were statistically significant. Comparative analysis was made and found that the TTO gives a greater increase in salivary pH with a P = 0.001** (P < 0.05) which is found to be statistically significant.
Table 1: Gender distribution among the participants

Click here to view
Table 2: Age distribution among the participants

Click here to view
Table 3: Comparision of salivary pH among the three groups (Wilcoxon Signed Ranks Test)

Click here to view




   Discussion Top


Mechanical plaque control by tooth brushing methods and interdental aids may not completely remove the plaque from the surface of the tooth.[7] Antimicrobial mouthwashes may help to improve plaque control and gingival health by reducing dental plaque from even difficult to reach areas. Because of the long-term effectiveness of CH, it has been considered as the gold standard among the mouthwashes.[8] This clinical trial was made to check the efficacy of gold standard CH mouthwash with the essential oils LGO and TTO as control groups. M. alternifolia, more commonly known as TTO has antimicrobial effects against the biofilms.[9] LGO can be used as an adjunct to the nonsurgical periodontal therapy for plaque control.

The results of the present study showed that there is a statistically significant increase in the postmouth rinses salivary pH in all three groups. Intergroup comparison for the effectiveness of CH, LGO, and TTO showed varied results in the salivary pH in each group. The clinical trial was conducted to check the PH of the oral cavity after using LGO and TTO as mouthwash and comparisons were made with the gold standard 0.2% CH mouthwash. There has been marked inter-individual variability detected regarding the salivary pH. Given that the tested pH strips, these vital GC PH strips are the suitable method for this type of study.

TTO has demonstrated remarkable antimicrobial activity which was more efficient than LGO and CH.[10] Whereas, both essential oils and CH were effective against reducing the plaque build-up on the teeth surface. It should be mentioned that in the multiple literature reviews it has been concluded that performing daily mouthwashes with TTO and LGO produces increased antiplaque effect to that of CH.[11] Concerning the effectiveness of the essential oils and CH on salivary pH, our study founded that the TTO mouthwash showed higher pH difference in the oral cavity than the other control groups providing an alkaline environment which is conducive to oral health care.


   Conclusion Top


The study conducted shows beneficial effects of TTO and LGO mouth rinse in providing an alkaline environment, which is conducive to oral health of children. It is high time to find an alternate remedy from natural sources to avoid the side effects associated with the commercially available products.[12]

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Coulter C, Walsh LJ. Saliva testing: Good practice, good sense. Stepwise 2006;1:32-5.  Back to cited text no. 1
    
2.
Cagetti MG, Mastroberardino S, Milia E, Cocco F, Lingström P, Campus G. Efficacy of 0.25% lemongrass oil mouthwash: A three arm prospective parallel clinical study. Nutrients 2013;5:2530-50.  Back to cited text no. 2
    
3.
Xu X, Zhou XD, Wu CD. The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of Streptococcus mutans. Antimicrob Agents Chemother 2011;55:1229-36.  Back to cited text no. 3
    
4.
Shetty C, Hegde MN, Devadiga D. Antiplaque effect of essential oils and 0.2% chlorhexidine on an in situ model of oral biofilm growth: A randomised clinical trial. Int J Res Ayurveda Pharm 2013;4:219-23.  Back to cited text no. 4
    
5.
Groppo FC, Bergamaschi Cde C, Cogo K, Franz-Montan M, Motta RH, de Andrade ED. Use of phytotherapy in dentistry. Phytother Res 2008;22:993-8.  Back to cited text no. 5
    
6.
Navazesh M. Methods for collecting saliva. Ann N Y Acad Sci 1993;694:72-7.  Back to cited text no. 6
    
7.
Goenka P, Sarawgi A, Karun V, Nigam AG, Dutta S, Marwah N. Camellia sinensis (tea): Implications and role in preventing dental problems. Pharmacogn Rev 2013;7:152-6.  Back to cited text no. 7
    
8.
Agarwal V, Kapoor S, Shah N. Role of “live microorganisms” (probiotics) in prevention of caries: Going on the natural way towards oral health. Ind J Multidiscip Dent 2012;2:491-6.  Back to cited text no. 8
    
9.
Thakkar PK, Imranulla M, Naveen Kumar PG, Prashant GM, Sakeenabi B, Sushanth VH. Antimicrobial activity of tea tree oil against pathogenic bacteria and comparison of its effectiveness with eucalyptus oil, lemongrass oil and conventional antibiotics. Dent Med Res 2013;1:7-12.  Back to cited text no. 9
  [Full text]  
10.
Neturi RS, Srinivas R, Simha VB, Sree SY, Shekhar CT, Kumar SP. Effects of tea tree oil on Streptococcus mutans counts-A randomised control trail. J Clin Diagn Res 2014;8:ZC128-30.  Back to cited text no. 10
    
11.
Jain I, Jain P. Comparative evaluation of antimicrobial efficacy of three different formulations of mouth rinses with multi-herbal mouth rinse. J Indian Soc Pedod Prev Dent 2016;34:315-23.  Back to cited text no. 11
[PUBMED]  [Full text]  
12.
Srinidhi PB, Basha S, Naveen Kumar P, Prashant GM, Sushanth VH, Imranulla M. Effect of two different commercially available tea products on salivary pH: A randomized double blinded concurrent parallel study. Dent Med Res 2014;2:39-42.  Back to cited text no. 12
  [Full text]  



 
 
    Tables

  [Table 1], [Table 2], [Table 3]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
   Conclusion
    References
    Article Tables

 Article Access Statistics
    Viewed550    
    Printed20    
    Emailed0    
    PDF Downloaded40    
    Comments [Add]    

Recommend this journal