Analysis of surface roughness and three-dimensional scanning topography of zirconia implants before and after photofunctionalization by atomic force microscopy: An In Vitro study
R Arun Jaikumar1, Suma Karthigeyan2, TR Ramesh Bhat1, Madhulika Naidu3, GR Praveen Raj4, Senthil Natarajan5
1 Department of Prosthodontics, Best Dental Science College, Madurai, Tamil Nadu, India 2 Department of Prosthodontics, Rajah Mutiah Dental College, Chidambaram, Tamil Nadu, India 3 Department of Oral Medicine and Radiology, Best Dental Science College, Madurai, Tamil Nadu, India 4 Department of Prosthodontics, Vinayaka Mission Sankarachariya Dental College, Salem, Tamil Nadu, India 5 Department of Conservative Dentistry and Endodontics, Tagore Dental College, Rathinamangalam, Tamil Nadu, India
Correspondence Address:
R Arun Jaikumar Department of Prosthodontics, Best Dental Science College, Madurai, Tamil Nadu India
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/jpbs.JPBS_724_20
|
Aim: To analyze surface roughness and three-dimensional (3D) scanning topography parameters of zirconia implants before and after photofunctionalization by atomic force microscopy (AFM). Materials and Methods: Ten commercially available zirconia implants five each in the study and control group were taken. The study group was subjected to ultraviolet (UV) radiation for 48 h using the shorter wavelength of 254 nm. After washing all the implants with 70% alcohol and drying, 3D surface topography and roughness parameters were analyzed using CSC 17 probe AFM at three different magnifications 25 μm, 50 μm, and 80 μm, respectively. Results: The surface topography and calculated mean amplitude, spatial, and hybrid parameters of the study group were higher than the control group (P < 0.05) in all three magnifications. Up to scale depth and peak value for the study and control group were (−0.4–0.4: −2-1) (−0.75 to 0.6:−1–1.3) (−0.75-−0.5: −1.5-1.3) for the study and control group at 25, 50, and 80 μm magnification, respectively. This indicates that photofunctionalization increased surface roughness of Zirconia implants to desirable extent. Conclusion: There is a definite difference in the quantitative topographic characteristics with zirconia implants being microroughned after photofunctionalization (UV treatment).
|