Journal of Pharmacy And Bioallied Sciences

ORIGINAL ARTICLE
Year
: 2021  |  Volume : 13  |  Issue : 5  |  Page : 521--526

Synthesis and characterization of a ring-opening oxaspiro comonomer by a novel catalytic method for denture base resins


Ranganathan Ajay1, Vikraman Rakshagan2, Rajamani Ganeshkumar3, Elumalai Ambedkar3, Shafiullah RahmathShameem3, Kanagesan Praveena4 
1 Department of Prosthodontics and Crown and Bridge, Vivekanandha Dental College for Women, Namakkal, Tamil Nadu, India
2 Department of Prosthodontics and Implant Dentistry, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, Tamil Nadu, India
3 Department of Prosthodontics and Crown and Bridge, Sri Venkateswara Dental College and Hospital, Chennai, Tamil Nadu, India
4 Department of Prosthodontics and Crown and Bridge, JKK Nattraja Dental College and Hospital, Komarapalayam, Tamil Nadu, India

Correspondence Address:
Ranganathan Ajay
Department of Prosthodontics and Crown and Bridge, Vivekanandha Dental College for Women, Elayampalayam, Tiruchengode, Namakkal - 637 205, Tamil Nadu
India

Background: 3,9-Dimethylene-1,5,7,11-tetraoxaspiro[5,5]undecane (DMTOSU) is a double ring-opening monomer that exhibits expansion upon polymerization and may be used as a denture base resin's comonomer to offset or minimize polymerization shrinkage. It's synthesis by transesterification reaction (TE) catalyzed by distannoxane is not reported in the literature. The synthesis became the prime concern because this monomer is hardly available commercially. Purpose: The purpose is to confirm the DMTOSU synthesis and compare the synthesized monomers obtained by two different catalytic processes through Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies. Materials and Methods: Scheme I synthesis was by TE catalyzed by dichlorotetrabutyl distannoxane (DCBS) yielding M1 monomer. Scheme II synthesis was catalyzed by dibutyltin oxide-carbon disulfide (DBTO-CS2) yielding M2 monomer. Results: The appearance of a characteristic peak at 1212 cm−1 in FTIR spectrum, a doublet at δ 4.95 in 1H-NMR spectrum and a peak at δ 117.12 in 13C-NMR spectrum confirmed the synthesis of DMTOSU-M1catalyzed by DCBS, which is not significantly different from DMTOSU-M2 catalyzed by DBTO-CS2. Conclusion: The catalytic action of DCBS is a successful alternative to the DBTO-CS2 catalysis in DMTOSU synthesis.


How to cite this article:
Ajay R, Rakshagan V, Ganeshkumar R, Ambedkar E, RahmathShameem S, Praveena K. Synthesis and characterization of a ring-opening oxaspiro comonomer by a novel catalytic method for denture base resins.J Pharm Bioall Sci 2021;13:521-526


How to cite this URL:
Ajay R, Rakshagan V, Ganeshkumar R, Ambedkar E, RahmathShameem S, Praveena K. Synthesis and characterization of a ring-opening oxaspiro comonomer by a novel catalytic method for denture base resins. J Pharm Bioall Sci [serial online] 2021 [cited 2021 Aug 1 ];13:521-526
Available from: https://www.jpbsonline.org/article.asp?issn=0975-7406;year=2021;volume=13;issue=5;spage=521;epage=526;aulast=Ajay;type=0